دانلود مقاله و پروژه و پایان نامه دانشجوئی

دانلود مقاله و پروژه و پایان نامه دانشجوئی

دانلود مقاله و پروژه و پایان نامه دانشجوئی

دانلود مقاله و پروژه و پایان نامه دانشجوئی

قائد شرفی

: روش مواد و

پژوهش به صورت مروری و با استفاده از کلمات کلیدی نانوفناوری ، نانو علم ، علوم غذایی و صنایع غذا یی انجام شد . خلاصه و اصل مقالات در سایت های جستجو گر همچون ، Yahoo ، Google ، Med ، Pub ، Elsevir و نیز در کتب ، مجلات ، مقالات کنگر ه ها جستجو و پس از   میل با دیدی تحلیلی مورد بررسی قرار گرفتند.

 یافته ها :

نانو فناوری و نانو علم از پتا نسیل قوی برای بهبود اقتصاد و استاندارد های زندگی بشر برخودار است و کاربرد ان در حوزه های مختلف از جمله ساخت مواد ، الکترونیک و رایانه ، پزشکی و بهداشت ، امنیت ملی و دفاعی ئ غیره روز به روز بیشتر می شود . مهمترین ابزار نانو فناوری ساخت نانو مواد است که در شاخه های مختلف علوم از جمله علوم ذا کاربرد دارند . از جمله کاربرد های نانو مواد در علوم غذا و صنایع غذایی ، می توان به بسته بندی ، تولید غذا های ملکو لی ، برچسب گذاری و پایش ، افزودنی های غذایی ، غذا های دارای انتشار مخصوص در بدن و انزیم ها اشاره نمود روکش کردن .

نانو تکنولوژی ایران

 

1-مقدمه

نانوتکنولوژی، توانمندی تولید مواد، ابزارها و سیستم‌های جدید با در دست گرفتن کنترل در سطوح مولکولی و اتمی و استفاده از خواصی است که در آن سطوح ظاهر می‌شود. از همین تعریف ساده بر می‌آید که نانوتکنولوژی یک رشته جدید نیست، بلکه رویکردی جدید در تمام رشته‌هاست. از زمانی که فاینمن، فیزیکدان برجستة آمریکایی، ایدة کار با اتمها و مولکولها را مطرح کرد [10] محققان جهان به کار در این عرصه روی آوردند. برای نانوتکنولوژی کاربردهایی را در حوزه‌های مختلف از غذا و دارو و تشخیص پزشکی و بیوتکنولوژی تا الکترونیک و کامپیوتر، ارتباطات، حمل و نقل، انرژی، محیط زیست، مواد، هوافضا و امنیت ملی برشمرده‌اند. کاربردهای وسیع این عرصه به همراه اثرات اجتماعی، سیاسی و حقوقی آن، این فناوری را به عنوان یک زمینه «فرارشته‌ای و فرابخشی» مطرح نموده است.

2-نانوتکنولوژی و کاربردهای آن

علوم و فناوری نانو، عنصری اساسی در درک بهتر طبیعت در دهه‌های آتی خواهدبود. ازجمله موارد مهم در آینده، همکاریهای تحقیقاتی میان‌رشته‌ا‌ی، آموزش خاص و انتقال ایده‌ها و افراد به صنعت خواهدبود. بخشی از تأثیرات و کاربردهای نانوتکنولوژی به شرح زیر می‌باشد[2، 3، 5 و 6]:

2-1-تولید، مواد و محصولات صنعتی

 کارکرد منحصربه‌فرد باشند، انقلابی در مواد و فرآیندهای تولید آنها، ایجاد می‌کند. محقّقین قادر به ایجاد ساختارهایی از مواد

پیش‌بینی پیشرفت نانوتکنولوژی با کمک شاخصهای علم و فناوری

- مقدمه

علوم نانو در دو دهه گذشته، پیشرفت بزرگی حاصل کرده است. ما شاهد کشفیات علمی و پیشرفتهای تکنولوژیکی مهمی بوده‌ایم. به عنوان مثال، این پیشرفتها شامل اختراع میکروسکوپ تونل‌زنی پیمایشگر  (STM) در سال 1982 ]1[ یا کشف فولرینها در سال 1985 می‌باشد]2[. در حال حاضر تعداد اندکی از محصولات مبتنی بر نانوتکنولوژی به استفادة تجاری رسیده‌اند. با این وجود، آیا دانش واقعی علمی، جوابگوی اشتیاق جهانی نسبت به این فناوری هست ؟ تا چه حد احتمال دارد که بازار جهانی در طی 10 تا 15 سال آینده به هزار میلیارد دلار در سال برسد]3[؟

ارزیابی قابلیت فناوریهای تکامل یافته کار آسانی نیست و برای یک فناوری جدید مثل نانوتکنولوژی، این کار دشوارتر است. البته در پیش‌بینی سعی می‌شود از شاخصهایی استفاده شود که توانشان در پیش‌بینی قابلیت دیگر فناوریهای جدید به اثبات رسیده باشد. دو تا از واضح‌ترین شاخصهای پیش‌بینی، تعداد مقاله‌های علمی و تعداد اختراعات ثبت شده هستند. اولی معمولاً شاخص خوبی برای فعالیتهای علمی و دومی برای قابلیت انتقال نتایج علمی به کاربردهای عملی است. شکل 1 تکامل تدریجی انتشارات و اختراعات نانوتکنولوژی از شروع دهة 1980 تا 1998 را نشان می‌دهد. اطلاعات انتشارات جهانی نانوتکنولوژی از داده‌های Science Citation Index (SCI) اقتباس شده است. اختراعات نانو، آنهایی هستند که در European Patent Office (EPO)  در مونیخ ثبت شده‌اند. اختراعاتEPO داده‌های بسیاری از کشورها را در بر می‌گیرد. از نظر گسترة کار و هزینة بالا، منطقی به نظر می‌رسد که مخترعین از اختراعات به صورت تجاری بهره‌برداری کنند. لیستی از کلمات کلیدی علوم و فناوری نانو جهت دستیابی به انتشارات، اختراعات و روشها منتشر شده‌است

تاریخچه فناوری نانو

در طول تاریخ بشر از زمان یونان باستان، مردم و به‌خصوص دانشمندان آن دوره بر این باور بودند که مواد را می‌توان آنقدر به اجزاء کوچک تقسیم کرد تا به ذراتی رسید که خردناشدنی هستند و این ذرات بنیان مواد را تشکیل می‌دهند، شاید بتوان دموکریتوس فیلسوف یونانی را پدر فناوری و علوم نانو دانست چرا که در حدود 400 سال قبل از میلاد مسیح او اولین کسی بود که واژة اتم را که به معنی تقسیم‌نشدنی در زبان یونانی است برای توصیف ذرات سازنده مواد به کار برد.
با تحقیقات و آزمایش‌های بسیار، دانشمندان تاکنون 108 نوع اتم و تعداد زیادی ایزوتوپ کشف کرده‌اند. آنها همچنین پی برده اند که اتم‌ها از ذرات کوچکتری مانند کوارک‌ها و لپتون‌ها تشکیل شده‌اند. با این حال این کشف‌ها در تاریخ پیدایش این فناوری پیچیده زیاد مهم نیست.
نقطه شروع و توسعه اولیه فناوری نانو به طور دقیق مشخص نیست. شاید بتوان گفت که اولین نانوتکنولوژیست‌ها شیشه‌گران قرون وسطایی بوده‌اند که از قالب‌های قدیمی(Medieal forges) برای شکل‌دادن شیشه‌هایشان استفاده می‌کرده‌اند. البته این شیشه‌گران نمی‌دانستند که چرا با اضافه‌کردن طلا به شیشه رنگ آن تغییر می‌کند. در آن زمان برای ساخت شیشه‌های کلیساهای قرون وسطایی از ذرات نانومتری طلا استفاده می‌‌شده است و با این کار شیشه‌های رنگی بسیار جذابی بدست می‌آمده است. این قبیل شیشه‌ها هم‌اکنون در بین شیشه‌های بسیار قدیمی یافت می‌شوند. رنگ به‌وجودآمده در این شیشه‌ها برپایه این حقیقت استوار است که مواد با ابعاد نانو دارای همان خواص مواد با ابعاد میکرو نمی‌باشند.
در واقع یافتن مثالهایی برای استفاده از نانو ذرات فلزی چندان سخت نیست.رنگدانه‌های تزیینی جام مشهور لیکرگوس در روم باستان ( قرن چهارم بعد از میلاد) نمونه‌ای از آنهاست. این جام هنوز در موزه بریتانیا قرار دارد و بسته به جهت نور تابیده به آن رنگهای متفاوتی دارد. نور انعکاس یافته از آن سبز است ولی اگر نوری از درون آن بتابد، به رنگ قرمز دیده می‌شود. آنالیز این شیشه حکایت از وجود مقادیر بسیار اندکی از بلورهای فلزی ریز700 (nm) دارد ، که حاوی نقره و طلا با نسبت مولی تقریبا 14 به 1 است حضور این نانوبلورها باعث رنگ ویژه جام لیکرگوس گشته است.

سانترفیوژ چیست و چگونه عمل می کند

سانترفیوز دستگاه استوانه ای شکلی است که درست مثل توربین هواپیما پره هایی در وسط آن وجود دارد این پره ها در هر دقیقه بیش از یک صد هزار گردش دارند در نتیجه این چرخش اورانیوم سنگین روی دیواره آخری سانترفیوژ قرار می گیرد و اورانیوم 235 در کنار آن می نشیند باید هزاران سانترفیوژ در کنار هم قرار بگیرند تا ما بتوانیم اورانیوم را غنی کنیم یعنی با یک یا چند سانترفیوژ نمی توان اورانیوم را غنی کرد

مواد و نانوتکنولوژی(کامپوزیتها )

 متن تحلیل یکی از کاربردهای عمدة کامپوزیت‌ها، ساخت تجهیزات مقاوم در برابر خوردگی می‌باشد. در این میان لوله‌های انتقال سیال، بزرگترین بخش تجهیزات مقاوم در برابر خوردگی را به خود اختصاص می‌دهد. متن زیر برگرفته از سایت اینترنتی www.smithfiberglass.com در معرفی تکنولوژی لوله‌های کامپوزیتی می‌باشد:  

خوردگی مواد، سالیانه میلیون‌ها دلار هزینه در سراسر جهان بر جای می­گذارد. زیان‌های حاصل از خوردگی به‌طور میانگین 4 درصد تولید ناخالص ملی یک کشور را به هدر می‌دهد.

خوردگی یک پدیدة شیمیایی است که در اثر آن نواقصی در خواص فیزیکی و مکانیکی ماده ایجاد شده و سبب می­گردد تا قطعه مورد نظر به مرور زمان کارایی خود را از دست بدهد. مثال بارز خوردگی، زنگ‌زدگی فلزات در محیط­های نمناک و مرطوب است.

نانولیتوگرافیِ قلمِ آغشته

نانولیتوگرافیِ قلمِ آغشته

موضوع: نانو دانش و فنون مقیاس نانو

 

دانشمندان می‌کوشند روش‌هایی ابداع کنند که بتوان با آنها سطوحی در مقیاس 1 تا 100 نانومتر را شکل داد. چنین دستاوردی برای فناوری نانو بسیار مهم و بنیادی است، زیرا دانشمندان رشته‌های مختلف مانند الکترونیک، داروسازی یا تشخیص بیماری‌ها را برای ورود به دنیای نانو توانمند می‌سازد. پس از اختراع میکروسکوپ تونل‌زنی اتمی (STM) و به دنبال آن میکروسکوپ نیروی اتمی (AFM) متخصصان زیادی کوشیده‌اند طرح‌هایی را با مشقت فراوان توسط بازوهای ظریف این میکروسکوپ‌ها اتم به اتم بچینند. نمونه‌هایی از این طرح‌ها در شکل زیر دیده‌ می‌شوند. این کار زمان زیادی می‌برد و برای انجام آن باید خلأ بسیار بالا و دمای پایین ایجاد کرد.

گروه دیگری از متخصصان، از STM و AFM برای خراشیدن یا ایجاد واکنش اکسیداسیون در سطوح نانویی استفاده کرده‌اند. این تکنیک‌ها کاربردهای مهمی دارند، اما متأسفانه اکسیداسیون را تنها بر سطوح خاصی از فلزات و نیمه‌هادی‌ها به وجود می‌آورند و به علاوه نمی‌توان به‌راحتی آنها را برای ایجاد چند لایه روی هم به کار گرفت.
«
نانولیتوگرافیِ قلمِ آغشته» که به طور خلاصه DPN نامیده می‌شود، روش نوینی برای طراحی سیستم‌ها در مقیاس نانومتری است. در این روش یک سوزن بسیار نوک‌تیز، مواد شیمیایی (جوهر) را روی سطح مورد نظر می‌نشاند. با این روش، که شبیه استفاده از پر برای نوشتن است، نقش‌هایی به ریزی چند ده نانومتر قابل ترسیم‌اند. همچنین می‌توان انواع گوناگونی از جوهرها، از پوشش‌های فلزی گرفته تا ذرات نانومتری یا مولکول‌های زیستی را در شرایط کنترل‌شده به کار گرفت.

نانولیتوگرافیِ قلمِ آغشته چیست؟
این روش توسط «سی میرکین» و همکارانش در دانشگاه «نورث وسترن» ابداع شد. آنها توانستند مولکول‌ها را در فرآیندی قابل کنترل با استفاده از نوک سوزن یک میکروسکوپ نیروی اتمی روی سطح بنشانند. این روش در شکل زیر نشان داده شده است.

در کارهای اولیه‌ای که به روش DPN انجام می‌شد، مولکول‌ آلی «تایول» و سطح طلا به کار می‌رفتند (شکل 2). با استفاده از این سیستم، عوامل مؤثر در انتقال جوهر و حد دقت آن مشخص شد. به‌ویژه معلوم گردید که پخش جوهر بر روی سطح، برای این سیستم، به عوامل محیطی مانند دما و رطوبت وابسته است. متخصصان با کنترل این عوامل موفق به دستیابی به دقت بیشتر در ترسیم شدند. علاوه بر این، محققان توانستند لایه‌ای‌ به ارتفاع فقط یک مولکول، به تفکیک 12 نانومتر، را با استفاده از AFM به دست آورند.

 مقصود از تفکیک حداقل فاصلة قابل رعایت بین دو نقطه در طرح است، به طوری که دو نقطه از هم قابل تجزیه باشند. این مفهوم معادل قدرت تفکیک در چاپگرهاست.


شکل 2: نقش جوهر بر روی طلا که با استفاده از نانولیتوگرافی قلم آغشته در سرعت‌های متفاوت نگاشته شده‌اند. (سرعت‌ها از چپ به راست: 0.8، 0.6، 0.4، 0.2 و 0.1 میکرومتر بر ثانیه)

قدرت بی‌نظیر DPN و قابلیت‌های وسیع آن، توجه محققان زیادی را به خود جلب کرد. آنها دست به آزمایش‌های زیادی با این تکنیک زدند. در نتیجة این تحقیقات، آنها متوجه شدند فرآیند DPN برای تعداد زیادی از مولکول‌ها به عنوان جوهر قابل انجام است: سورفکتانت‌ها، مولکول‌های بزرگِ باردار مانند پروتئین‌ها و پولیمرها، مواد تشکیل‌دهندة سل‌ژل، اکسیدهای فلزی و حتی نانوذرات (شکل زیر را ببینید). سطوح قابل استفاده شامل فلزات (مانند طلا اگر از تیول به عنوان جوهر استفاده شود)، نارساناها (مانند اکسید آلومینیوم یا اکسید سیلیکون) و نیمه‌رساناها (مانند آرسنید گالیم) هستند.

سورفَکتانت‌ها موادی آلی هستند، دارای یک سر قطبی (آب‌گریز) و یک سر غیرقطبی (آب‌دوست). سر قطبی در آب محلول است، اما سر غیر قطبی در آب حل نمی‌شود و به همین علت این مواد همیشه به سطح آب می‌آیند و چون سطح آب محدود است، این مولکول‌ها یک لایة نازکِ به‌هم‌فشرده و منظم را تشکیل می‌دهند. به این خاصیت «خودساماندهی» می‌گویند. انواع مواد شوینده از این نوع‌اند. در مواد شوینده سر غیرقطبی به چربی‌ها و روغن‌ها می‌چسبد و در نتیجه می‌توانیم آنها را با آب بشوییم.


شکل 3 : نمونه‌هایی از مواد شیمیایی که به عنوان جوهر در نانولیتوگرافیِ قلمِ آغشته به کار گرفته شده‌اند.

توانایی‌های منحصربه‌فرد فرآیند DPN آن را به روشی پیشرو برای ترسیم نقوش با تفکیک بالا در ابعاد نانومتری تبدیل می‌کند. در بین روش‌هایی که برای ابعاد زیر 50 نانومتر قابل استفاده‌اند، مانند لیتوگرافی پرتو الکترونی، DPN تنها ابزاری است که می‌تواند مولکول‌ها را به طور مستقیم در شرایط کنترل‌شده روی سطح بنشاند. در حقیقت، از آنجا که ابزارهای DPN از میکروسکوپ‌های پیمایشی استفاده می‌کنند، می‌توانند عملیات ترسیم نقوش و تصویربرداری را همزمان انجام دهند. مسئلة مهم در اینجا تولید نقوش پیچیده در ابعاد نانومتری نیست؛ مسئلة مهم‌تر این است که بتوان این نقوش را ــ که ممکن است ملزم به پیاده‌سازی در چند مرحلة مجزا باشند ــ به دقت نسبت به هم تثبیت کرد. محققان با استفاده از DPN توانسته‌اند نقوش مختلف را با استفاده از جوهرهای مختلف با خطای کمتر از 5 نانومتر روی هم رسم کنند.

برای جمع‌بندی می‌توانیم بگوییم که نانولیتوگرافیِ قلمِ آغشته، مزایای زیر را دارد:
1.
قدرت تفکیک بالا. ترسیم نقوشی به کوچکی 12 نانومتر، با دقت 5 نانومتر و قابل تطبیق بر نقوش لایه‌های بعدی؛
2. بی‌نیاز از خلأ. برای انتقال جوهر به سطح با استفاده از سوزن AFM، کافی است شرایط محیطی محصورشده‌ای فراهم کنیم. بر خلاف برخی روش‌های دیگر، در این روش ترسیم به خلأ نیازی نیست. این خاصیت به‌ویژه در مورد مولکول‌های زیستی که در خلأ آسیب می‌بینند بسیار مهم است؛
3. قدرت ترسیم مستقیم. مواد مورد نظر می‌توانند دقیقاً (و فقط) در جایی که مطلوب است گذارده شوند. به علاوه، نقوش ترسیم‌شده به این روش، به عنوان فیلتر فوتورزیست برای فرآیندهای میکروالکترونیک استاندارد قابل استفاده اند؛
4. امکان به کارگیری مواد گوناگون. در نقش‌های ترسیمی با DPN می‌توان از انواع متنوع جوهر بر روی سطوح مختلف استفاده کرد؛
5. قابلیت هدایت خودکار. این روش را می‌توان به‌راحتی و با برنامه‌ریزی ماشین‌های موجود به طور خودکار پیاده کرد.

این برتری‌ها، DPN را روشی بسیار سودمند برای توسعة لیتوگرافی در ابعاد نانومتری ساخته است. در مقیاس آزمایشگاهی، این تکنیک می‌تواند همة کارآیی‌های سایر روش‌های لیتوگرافی را داشته باشد. اما حوزه‌های گوناگون صنعت هم می‌توانند با استفاده از این روش به تولید صنعتی محصولات جدید بپردازند. در ادامه به چند کاربرد این تکنیک که احتمال صنعتی شدن آن زیاد است، اشاره می‌کنیم.

کاربردهایی برای DPN
پیش‌بینی در مورد مسیر فناوری‌های نوظهورا بسیار مشکل است. با این حال، بررسی تعداد مقالات و فعالیت‌های علمی نشان می‌دهد که DPN احتمالاً تأثیر مهمی در صنعت خواهد گذاشت. در این بخش، به چند حوزة مهم که این فناوری بر آنها تأثیرگذار خواهد بود تمرکز می‌کنیم؛ گرچه هنوز حوزه‌های دیگری برای بررسی و پیدا کردن کاربردهای جدید وجود دارند.

DNA یک مولکول بسیار بزرگ است که از کنار هم قرار گرفتن عوامل ساختاری کوچک‌تری به نام «ژن» تشکیل می‌شود. ترکیب و ترتیب قرارگیری ژن‌ها در این مولکول، همة خواص زیستیِ مولکول مانند کارکرد و سرعتِ تکثیر آن را مشخص می‌کند. در صورتی که ترتیب ژن‌ها به علت عوامل خارجی یا داخلی تغییر کند، اصطلاحاً «جهش ژنتیکی» رخ می‌دهد که عامل بسیار مهمی در ایجاد بسیاری از بیماری‌ها ــ و از همه مهم‌تر سرطان ــ است. از همین رو، اگر ترکیب ژن‌های DNA را ثبت کنیم، می‌توانیم به نارسایی‌های آن پی ببریم و این گام بسیار مهمی در تشخیص و درمان بیماری است (در صورت تشخیص زودهنگام سرطان، احتمال درمان بیماری بسیار زیاد است).

الف ـ آرایه‌های مولکول‌های زیستی در ابعاد میکرو و نانو
امروزه زیست‌شناسان از روش‌های جدیدی برای تشخیص ترکیب ژنتیکی مولکول‌های زیستی استفاده می‌کنند. تقریباً همة اطلاعات لازم در مورد ساختار یک سلول و بیماری‌های احتمالی آن، مانند جهش ژنتیکی که عامل اصلی ایجاد سرطان و برخی نارسایی‌های دیگر زیستی است، در DNA وجود دارد.

جدیدترین ابزاری که برای تشخیص ژن‌های DNA به کار گرفته می‌شود، «چیپ‌های زیستیِ آرایه‌ای» است. در این ابزار، تعداد زیادی حس‌گر که هر کدام به نوع خاصی از ژن حساس‌اند، به‌دقت کنار هم چیده شده‌اند. ترتیبِ قرارگیری آنها طوری تنظیم شده است که هر دسته از آنها نوع مشخصی از ترتیبِ ژن‌ها را مشخص می‌کنند. به طوری که هرDNA به خاطر ساختار خاص خود تنها به یک دسته از حس‌گرها می‌چسبد. با تشخیص محل قرارگیری مولکول DNA ناشناخته روی چیپ زیستی و مقایسة آن با مرجع، می‌توان ترکیب ساختاری مولکول را به‌سرعت پیدا کرد.
برای ساخت چیپ‌های زیستیِ آرایه‌ای که بتوانند انواع مختلف DNA را تشخیص دهند، باید بتوانیم تعداد زیادی مولکول‌ حس‌گر را به‌درستی کنار هم بچینیم. DPN به عنوان تکنیکی برای نوشتن مستقیم مولکول‌ها روی سطوح، قابلیت‌های زیادی به دست پژوهشگران داده است و توان ساخت چیپ‌های پیشرفته‌تر با سرعت و دقت تشخیص بسیار بالاتر را فراهم آورده است.

ب ـ ساخت ماسک برای حک کردن طرح‌های نانومتری با استفاده از خوردگی مرطوب
یکی از روش‌های مرسوم برای ترسیم طرح‌ها روی سطوح، «خوردگی مرطوب» است. خوردگی مرطوب شباهت زیادی به تکنیکی دارد که برای ایجاد یک فیبر مدار چاپی برای یک مدار خاص الکترونیکی استفاده می‌شود، اما در ابعادی بسیار کوچک‌تر. در این روش ابتدا طرح مورد نظر با لایه‌ای از مواد مقاوم در برابر خوردگی روی سطح ترسیم می‌شود. سپس سطح در مایعی قرار می‌گیرد که خاصیت خوردگی دارد. در نتیجه، قسمت‌هایی که در تماس با مایع‌اند حل می‌شوند. میزان پیشروی در سطح با کنترل عوامل مختلف، مانند دما، میزان غلظت حلال و زمان تماس با مایع قابل تنظیم است. اما لازمة این روش، رسم طرح مورد نظر با مادة مقاوم روی سطح است. به طور سنتی این کار با استفاده از تکنیک‌های عکاسی صورت می‌گرفت، اما از انجا که طول موج نور بسیار بزرگ‌تر از نقش‌هایی است که می‌خواهیم ایجاد کنیم، رسیدن به قدرت تفکیکِ کمتر از چند صد نانومتر با روش‌های سنتی غیرممکن است. به همین علت، DPN که به طور مستقیم طرح مورد نظر را با مادة مقاوم بر روی سطح رسم می‌کند، پیشرفت بسیار مهمی در این حوزه به شمار می‌رود. قابلیت به‌کارگیری این تکنیک برای سطوح مختلف، میزان امیدواری کارشناسان برای به‌کارگیری صنعتی آن را افزایش می دهد. به‌تازگی سوزن‌های مخصوص چندگانه‌ای برای ترسیم موازیِ طرح‌ها با تکنیک DPN ساخته ‌شده‌اند که می‌توانند تا ده هزار طرح را به طور موازی رسم کنند. تصویر زیر را ببینید.


شکل 4: استفاده از آرایة سوزن‌ها در نانولیتوگرافیِ قلمِ آغشته برای حک طرح‌های یکسان به طور موازی

آخرین دستاورد: استفاده از جوهرهای خشک
به‌تازگی با استفاده از یک تکنیک جدید در مرکز تحقیقات نیروی دریایی آمریکا و دانشگاه «جُرجیا تِک» ــ که بر پایة DPN طراحی شده است ــ محققان توانسته‌اند انواع جدیدی از جوهرهای خشک را به طور کنترل‌شده روی سطح بنشانند. در این روش، دمای سوزن میکروسکوپِ نیروی اتمی با سازوکاری داخلی قابل تغییر و کنترل است. با افزایش دمای سوزن، مادة جامدی که به عنوان جوهر روی سوزن قرار داده شده است ذوب می‌شود و روی سطح می‌چسبد. با سرد کردن سوزن، دیگر جوهر به سطح نمی‌چسبد و به این ترتیب می‌توان طرح پیاده‌شده را با دقت بیشتری کنترل کرد. مراحل این فرآیند در تصویر زیر دیده می‌شوند. این روش را «نانولیتوگرافیِ قلمِ آغشتة گرمایی» نامیده‌اند.

یکی از مهم‌ترین مزایای این روش امکان به‌کارگیری آن در خلأ است. جوهرهای مایع در خلأ قابل استفاده نیستند، زیرا به‌سرعت قبل از اینکه به سطح بچسبند بخار می‌شوند. این موضوع گاهی باعث کاهش دقت مسیر جوهر و پخش شدن آن روی سطح می‌شود. با استفاده از روش گرمایی امکان ترسیم نقش‌های ظریف‌تر فراهم شده است. محققان امیدوارند بتوانند طرح‌هایی را در ابعاد کمتر از 10 نانومتر با این روش ترسیم کنند. استفاده از سوزن‌های متعدد برای ترسیم موازی، در این روش هم امکان‌پذیر شده است.

مراجع

1- “The Evolution of Dip-Pen Nanolithography”, Chad A. Mirkin et al. Angew. Chem Int. Ed. 2004, pp. 30, 43, 45.
2- Getting Small with Dip-Pen Nanolithography, S. Cruchon-Dupeyrat, Nanoink Inc.
3- “Nanoscale Deposition of Solid Inks via Thermal Dip Pen Nanolithography”, P.E.Sheehan et al. Applied Physics Letters, 2004, Vol. 85, No. 9, pp. 1589-1591.

دربارة مبتکر روش لیتوگرافی قلم آغشته
«چاد میرکین» لیسانس خود را از کالج دیکینسون (1986) و دکترای خود را از دانشگاه ایالتی پنسیلوانیا (1989) گرفت. بعد از گذراندن یک دورة پَسادکتری در ام. آی. تی با حمایت بنیاد ملی علوم آمریکا جزو هیئت علمی دانشگاه نورث وسترن شد. او در حال حاضر کرسی جرج راتمان در شیمی و مدیریت مرکز تحقیقات نانوفناوری را در این دانشگاه بر عهده دارد. میرکین همچنین رهبری یک برنامة تحقیقاتی بین‌رشته‌ای متمرکز بر فیزیک و شیمی برای ارائة راه‌حل‌های مسائل نانوفناوری، به‌خصوص معماری سطوح در این ابعاد را انجام می دهد.

او جوایز بسیاری گرفته است که از جمله می‌توان به اینها اشاره کرد:
1.
جایزة ACS در شیمی محض؛
2. جایزة فاینمن؛
3. جایزة ویلسون از دانشگاه هاروارد.
او جزو بنیانگذاران دو شرکت Nanoink و Nanosphere است. فعالیت‌های این دو شرکت بر اساس یافته‌های علمیِ گروه او شکل گرفته‌اند

 

 

کاربردهای فناوری نانو در کشاورزی

توسعة نانوفناوری بستگی به توان محققان در تولید کارآمد ساختارهایی با ابعاد کمتر از 100 نانومتر (کمتر از یک هزارم قطر موی انسان) دارد.
فوتولیتوگرافی، فناوری‌ای است که هم‌اکنون برای ساخت مدار روی میکروچیپ‌ها به کار گرفته می‌شود. کاربرد این فناوری را می‌توان به تولید نانوساختارها تعمیم داد، ولی تغییرات لازم بسیار گران و از نظر تکنیکی دشوارند.
روش‌های ساخت سیستم‌های نانومتری دو دسته‌اند: بالا به پایین که با کندن مولکول‌ها از سطح ماده صورت می‌گیرد و پایین به بالا که با نشاندن اتم‌ها و مولکول‌ها در کنار هم ساختار نانویی به وجود می‌آورد.
لیتوگرافی نرم و لیتوگرافی قلمی دو مثال از روش‌های مربوط به بالا به پایین هستند. محققان با استفاده از روش‌های پایین به بالا در حال ساخت نقاطی کوانتومی هستند که می‌توانند به عنوان رنگ‌های بیولوژیک به کار روند.

یادتان هست آخرین بار کِی رایانه‌تان را ارتقا داده‌اید یا به جای رایانة کُندِ قدیمی، رایانة جدیدی گرفته‌اید؟ اگر سرعت پردازنده‌ها را بر اساس سالی که اولین‌بار به بازار عرضه شدند یادداشت کنید، شما هم می‌توانید با رسم یک نمودار در کاغذ نیم‌لگاریتمی، به کشفِ دوبارة «قانون مور» نائل آیید! قانون مور نشان می‌دهد که از سال 1970 تا کنون، سرعت پردازنده‌ها هر 18 ماه دو برابر شده است. سرعت یک پردازنده ارتباط مستقیمی با تعداد ترانزیستورهای به‌کاررفته در مدار مجتمع آن دارد. فکر می‌کنید اندازة پردازندة سریعِ امروزِ شما از پردازندة کُندِ سه سال پیش بزرگتر است؟

قابلیتهای محتمل تکنیکی نانوتکنولوژی

  1. محصولات خود_اسمبل
  2. کامپیوترهایی با سرعت میلیاردها برابر کامپیوترهای امروزی
  3. اختراعات بسیار جدید (که امروزه ناممکن است)
  4. سفرهای فضایی امن و مقرون به صرفه
  5. نانوتکنولوژی پزشکی که در واقع باعث ختم تقریبی بیماریها ، سالخوردگی و مرگ و میر خواهد شد.
  6. دستیابی به تحصیلات عالی برای همه بچه‌های دنیا
  7. احیاء و سازماندهی اراضی

سی پی اچ

شواهد تجربی بسیاری وجود دارد که گرانش، انرژی الکترومغناطیسی تولید می کند. به همین دلیل از زمانی که نیروهای الکتریکی و مغناطیسی مورد توجه و آزمایش قرار گرفت، فیزیکدانان به وابستگی شدید نیروهای الکترومغناطیسی و گرانشی پی بردند. فارادی نخستین کسی است که این وابستگی را متذکر شد. پلانک نیز نظری مشابه داشت. اینشتین نیز مدت 35 سال تلاش کرد تا روابطی مشابه وابستگی الکتریسیته و مغناطیس، بین گرانش و الکترومغناطیس ارائه دهد. اما این کوششها بی نتیجه ماند.

اما سئوال این است که چرا با تمام شواهد تجربی موجود و تصریح فیزیکدانان بزرگی نظیر فارادی و پلانک هنوز نتیجه ی قابل قبولی به دست نیامده است؟ 

برای یافتن پاسخ اجازه دهید یکبار دیگر وابستگی الکتریسیته و مغناطیس را بررسی کنیم شاید بتوانیم علت این شکستها را دریابیم. 

همچنانکه می دانیم در اطراف یک بار ساکن میدان مغناطیسی احساس نمی شود. اما اگر بار حرکت کند، ما شاهد ایجاد یک میدان مغناطیسی خواهیم بود. همچنین تغییر میدان مغناطیسی نیز موجب تولید جریان القایی می گردد. در این تجربه ما شاهد ایجاد پدیده هایی هستیم که قبلاّ وجود نداشت. در اطراف یک سیم (که جریانی از آن نمی گذرد) هیچگونه اثری از میدان مغناطیسی دیده نمی شود. اما به محض عبور جریان الکتریکی از سیم، در اطراف آن میدان مغناطیسی ایجاد می شود. یا در مورد سیملوله اگر میدان مغناطیسی ثابت باشد، جریان الکتریکی در سیم بوجود نمی آید، اما با تغییر شار مغناطیسی، جریان الکتریکی ایجاد می شود

  اما در مورد گرانش مسئله بسیار پیچیده تر است. زیرا گرانش همواره وجود دارد و ما نمی توانیم شرایطی بوجود آوریم که آثار گرانشی نباشد و بعد آزمایشی ترتیب دهیم که ببینیم چه پدیده ای می تواند میدان گرانشی تولید کند.

از طرف دیگر چگونه می توانیم ببینیم هنگامیکه نیروی گرانش روی یک جسم کار انجام می دهد، خود گرانش دستخوش چه تغییری می شود؟ اگر ما می توانستیم این تغییرات را به تجربه درآوریم و بصورت کمی مورد بررسی قرار دهیم، آنگاه می توانستیم بسادگی وابستگی گرانش را به سایر پدیده ها نظیر الکترومغناطیس یا کار انجام شده بیان کنیم. اما چنین امری اگر ناممکن نباشد، بسیار مشکل و یا از حد  فناوری موجود خارج است. زیرا در شرایطی که ما آزمایش می کنیم، اگر از مقدار گرانش موجود در محل آزمایش کاسته شود، فوری از اطراف آن این کسری جبران می شود.

به عنوان مثال سنگی را از ارتفاع دلخواه رها کنید تا بطرف زمین سقوط کند. آنچنانکه در فیزیک مطرح است، انرژی پتانسیل گرانشی به انرژی جنبشی تبدیل می شود. آیا در اینجا از مقدار گرانش اطراف زمین کاسته می شود؟ اگر جواب منفی باشد آنگاه این سئوال پیش می آید که کدام اندازه گیری موجب این جواب منفی شده است؟

حال آزمایش دیگری را در نظر بگیرید. یک گلوله ی فلزی را از ارتفاعی رها کنید تا بطرف زمین سقوط کند. در محل رسیدن گلوله به سطح زمین یک صفحه ی فلزی قرار دهید. هنگامیکه گلوله به زمین می رسد و با صفحه برخورد می کند، مقداری گرما تولید می شود و حتی ما شاهد جرقه یعنی امواج الکترومغناطیسی خواهیم بود. عادت شده این پدیده را با اینکه انرژی پتانسیل گرانشی به انرژی جنبشی تبدیل می شود و انرژی ها به یکدیگر قابل تبدیل هستند، توجیه کنند. همین توجیه موجب می شود که ماهیت این فرایند کمتر مورد توجه و بررسی موشکافانه ی علمی قرار گیرد. اما اجازه دهید یک دید متفاوت به این تجارب داشته باشیم.