فرمت : WORD تعداد صفحه :29
مقدمه
موضوع اصلی ارتعاش بررسی حرکت نوسانی «سیستمهای دینامیکی» می باشد. سیستم دینامیکی از «پاره های مادی» پیوسته که نسبت به هم قابلیت حرکت ارتجاعی دارند تشکیل می شود. تمام اجسامی که دارای جرم و خاصیت کشسانی باشند، می توانند ارتعاش کنند.
جرم جزء لاینفک جسم بوده و خاصیت کشسانی از حرکات نسبی قسمتهای پیوسته آن ناشی می شود. سیستم ارتعاشی ممکن است ساده و یا بسیار پیچیده باشد. به عنوان مثال یک سازه یک ماشین یا اجزای آن و یا مجموعه ای از ماشینآلات سیستم های ارتعاشی محسوب می شوند. حرکت نوسانی می تواند اثرات نامطلوب و یا جزئی ریوی سیستم داشته و یا اصلاً لازم برای انجام کاری باشد.
هدف طراح کنترول ارتعاشات است زمانی که مضر است و تشدید و کاربرد صحیح آن است وقتی که لازم و مفید می باشد. گرچه باید گفت که در اکثر موارد ارتعاشات مضر بوده و بایستی کنترول شود. ارتعاشات در ماشینها ممکن است باعث شل شدن از کارافتادن و یا گسیختگی در قطعات شود. از موارد کاربرد ارتعاشات می توان لرزاننده ها در ریخته گری، هرس دندانه میخی ارتعاشی، ردیف کن های علوفه، غربالهای کمباین و ... در کشاورزی را نام برد.
مقصود نهایی از مطالعه ارتعاشات، تعیین اثرات آن در کارکرد و همچنین ایمنی سیستم ها می باشد. تحلیل حرکات ارتعاشی، قدم اصلی است که به سوی این هدف برداشته می شود.
ارتعاش در حین حرکت تراکتورهای کشاورزی که فاقد فنر ارتجاعی می باشند سرعتهای مؤثر آنها را محدود می کند و باعث ناراحتی و بعضی اوقات آسیب رسیدن دراز مدت به رانندگان می گردد. با بکارگیری مدل مناسب و تحلیل ریاضی می توان اثرات ارتعاش در حین حرکت تراکتور در مرحله طراحی را تعدیل کرده و باعث بهتر شدن حرکت تراکتور گردیم
فرمت : WORD تعداد صفحه :32
فصل اول
حرکت در فیزیک
مقدمه
آخرین فردی که اندیشه هایش بر نیوتن و فرمول بندی مکانیک کلاسیک تاثیر عمیق داشت، دکارت بود. با این وجود نظرات و کارهای دکارت در زمینه فیزیک حالت توصیفی داشت. اما همین مسائل توصیفی نیز به شدت با فیزیک ارسطویی در تضاد بود. اما از دیدگاه منطقی قوانین نیوتن شکل ریاضی نظریه های گالیله است. به همین دلیل نخست فیزیک دکارتی آورده شده و سپس مکانیک گالیله ای تا با مقایسه ی آنها با کارهای نیوتن، ارزش و اهمیت کار هر یک بهتر مشخص شود.
دکارت و مفهوم حرکت
در باب فیزک دکارت و مفهوم حرکت از دیدگاه او کمتر سخن گفته اند . گویی فیزیک دکارت با آنهمه اهمیت و تاثیرش بر آراء اندیشمندان بزرگی , همچون ایزاک نیوتن , در مقابل دیگر افکار او همچون تصورات فطری و دوگانه انگاری ذهن – کمتر مورد توجه بوده است.
فیزیک و شالوده های آن نزد دکارت نقشی محوری داشتند . هر چند امروزه احتمالاً او را بیشتر با مابعدالطبیعه ذهن و بدن یا برنامه و روش معرفت شناسی اش میشناسند. در قرن هفدهم میلادی لااقل به یک اندازه , فیزیک مکانیکی و مکانیک جهان هندسی در حرکت که نقش بسیاری در مقبولیت او نزد اندیشمندان معاصرش داشت , شاخته شده بود.
پیش زمینه های تاریخی
دکارت در جریان مخالفت با فلسفه مدرسی به هیچ وجه تنها نبود . آنزمان که دکارت در مدرسه فیزیک می آموخت حملات متعددی اندیشه های مختلف فلسفه طبیعی ارسطو را هدف قرار می داد . اما مهمترین امر در فهم فیزیک دکارت مسئله احیاء اتمیسم سنتی بود . در برابر دیدگاه ارسطویی، اتمیستهای سنتی از جمله , دموکریتوس , اپیکور , لوکرسیوس سعی می کردند تا رفتار ویژه اجسام را نه بر حسب صورتهای جوهری , بلکه بر حسب اندازه , شکل و حرکت اجسام کوچکتری بنام اتم تبیین نمایند. اتمهایی که در فضای خالی به حرکت واداشته شده اند . در قرن شانزدهم در باب اندیشه اتمیستی به طور گسترده ای بحث می شد. بطوریکه در اوایل قرن هفدهم می توان تعداد قابل توجهی از طرفداران آن از جمله نیکولاس هیل , سباستین باسو , فرانسیس بیکن , و گالیلو گالیله را نام برد . پس از تمام اینها , فیزیک دکارت نقطه پایانی بر این مباحث گذاشت که کاملا با جهان اتمیستها بیگانه بود . دکارت اعتقاد به وجود اتمهای جدا از هم و فضاهای خالی را که مشخصه فیزیک اتمیستی بود کنار گذاشت.
فرمت : WORD تعداد صفحه :34
حرکت در دو بعد:
حرکت یک گلولهی توپ که شلیک میشود یا حرکت یک سیاره بهدور خورشید یا حرکت اتومبیل در پیچجاده مثالهایی از حرکت در صفحه است که
«حرکت دو بعدی» نامیده میشود .
بردامکان جسم برحسب بردارهای یکه بهصورت

تعداد صفحات 7
فرمت فایل word
در جوش آرگون یا تیگ(TIG) برای ایجاد قوس جوشکاری از الکترود تنگستن استفاده می شود که این الکترود برخلاف دیگر فرایندهای جوشکاری حین عملیات جوشکاری مصرف نمی شود.
حین جوشکاری گاز خنثی هوا را از ناحیه جوشکاری بیرون رانده و از اکسیده شدن الکترود جلوگیری می کند. در جوشکاری تیگ الکترود فقط برای ایجاد قوس بکار برده می شود و خود الکترود در جوش مصرف نمی شود در حالیکه در جوش قوس فلزی الکترود در جوش مصرف می شود. در این نوع جوشکاری از سیم جوش(Filler metal)بعنوان فلز پرکننده استفاده می شود.و سیم جوش شبیه جوشکاری با اشعه اکسی استیلن(MIG/MAG)در جوش تغذیه می شود. در بین صنعتکاران ایرانی این جوش با نام جوش آلومینیوم شناخته می شود. نامهای تجارتی هلی آرک یا هلی ولد نیز به دلیل معروفیت نام این سازندگان در خصوص ماشینهای جوش تیگ باعث شده بعضا این نوع جوشکاری با نام سازندگان هم شناخته شود. نام جدید این فرایند G.T.A.W و نام آلمانی آن WIGمی باشد.
همانطور که از نام این فرایند پیداست گاز محافظ آرگون میباشد که ترکیب این گاز با هلیم بیشتر کاربرد دارد.
علت استفاده از هلیم این است که هلیم باعث افزایش توان قوس می شود و به همین دلیل سرعت جوشکاری را میتوان بالا برد و همینطور باعث خروج بهتر گازها از محدوده جوش میشود.
کاربرد این جوش عموما در جوشکاری موارد زیر است
تعداد صفحات 12
فرمت فایل word
انواع چسب ها:
تقسیم بندی چسب ها از دو دیدگاه صورت می گیرد: یکی از نقطه نظر ماهیت و طبیعت چسب ها و دیگری از نظر نحوه انجماد و چگونگی خود گیری و سفت شدن چسب ها .از نقطه نظر ماهیت چسب ها به دو گروه چسب های آلی و غیر آلی و یا دو دسته قابل حل در آب یا غیر قابل حل در آب تقسیم می شوند.از نقطه نظر نحوه انجماد و چگونگی سفت شدن و خود گیری ،چسب ها به سه نوع برگشت ناپذیر، میانه و برگشت پذیر تقسیم می شوند. چسب های آب دار و چسب های غیر آب دار نباید با هم دیگر مخلوط شوند زیرا هر زمان که این عمل صورت پذیرد ، استحکام مخلوط ماسه در حالت تر و در حالت خشک کاهش می یابد. و به خصوص اگر چسب آب دار ، خاک رس باشد ، کاهش استحکام شدید تر است.یک چسب مناسب باید ذرات ماسه را به یکدیگر اتصال دهد و استحکام قالب و ماسه ماهیچه را در حالت تر و خشک افزایش دهد.
همچنین باید شرایط زیر را فراهم سازد:
1- در خلال تهیه مخلوط های قالب گیری یا ماهیچه به طور یکنواخت بر روی سطوح ماسه پایه گسترده شود.
2- در هر دو حالت تر و خشک ، استحکام کافی مخلوط را فراهم سازد.
3- شکل پذیری مناسب در مخلوط ایجاد نماید ،به طوری که مخلوط قادر باشد همه بخش های قالب را پر کند.
4- کمترین چسبندگی را به سطح مدل و جعبه ماهیچه داشته باشد تا انجام فرایند قالب گیری و ماهیچه سازی امکان پذیر شود .
تعداد صفحات 38
فرمت فایل word
آماده سازی نمونه متالوگرافی را تا حد زیادی می توان یک هنر دانست معمولا در آزمایشگاه های مختلف از شیوه های متفاوتی برای آماده سازی نمونه استفاده می شود با توجه به اینکه فلزات از نظر سختی و بافت با یکدیگر متفاوت هستند از این رو با توجه به نوع فلز مورد آزمایش روش آماده سازی نمونه ممکن است کمی متفاوت باشد ولی بصورت کلی عملیات آماده سازی نمونه ها مشابه می باشد. برای آشنایی با فرایند آماده سازی یک نمونه متالوگرافی روش رایج در مورد آهن و فولاد مورد بررسی قرار می گیرد.
آماده سازی نمونه متالوگرافی را تا حد زیادی می توان یک هنر دانست معمولا در آزمایشگاه های مختلف از شیوه های متفاوتی برای آماده سازی نمونه استفاده می شود با توجه به اینکه فلزات از نظر سختی و بافت با یکدیگر متفاوت هستند از این رو با توجه به نوع فلز مورد آزمایش روش آماده سازی نمونه ممکن است کمی متفاوت باشد ولی بصورت کلی عملیات آماده سازی نمونه ها مشابه می باشد. برای آشنایی با فرایند آماده سازی یک نمونه متالوگرافی روش رایج در مورد آهن و فولاد مورد بررسی قرار می گیرد.شرح : یک نمونه کوچک که از یک قطعه فولادی جدا شده را در نظر بگیرید که یک سطح تخت مناسب در یک طرف این نمونه بوسیله اره کردن و سنگ زنی آمده شده است روش معمول اینست که این نمونه در یک قرص پلاستیکی با قطر یک اینچ 25 میلیمتر و ضخامت یک دوم اینچ نصب می شود به طوری که سطحی از نمونه که قرار است پولیش شود در یک طرف دیسک قرار بگیرد .دریک روش برای تولید این قرص نمونه در داخل یک قالب ساده استوانه ای قرار داده شده و سپس رزین اپوکسی مایع در داخل قالب ریخته می شود این مراحل به چهار مرحله مختلف طبقه بندی می شود :1) سایش نرم 2) پرداخت خشن 3) پرداخت نهایی 4) اچ کردن در سه قسمت اول هدف اصلی کاهش ضخامت لایه تغییر شکل یافته زیر سطح نمونه است عملیّات برش سنگ زنی و سایش فلز نزدیک به سطح را به شدت تغییر شکل می دهند ساختار واقعی فلز تنها زمانی آشکار می شود که لایه تغییر شکل یافته کاملا از روی سطح برداشته شود چون هر مرحله از آماده سازی نمونه نیز به خودی خود باعث تغییر شکل در سطح می شود ، بنابراین در هر مرحله باید از ساینده های نرم تر از قبلی استفاده شود هر ساینده سبب جدا شدن لایه تغییر شکل یافته ناشی از مرحله قبل می شود در حالی که همین ساینده ، یک لایه اعوجاج یافته با عمق کمتر نیز تولید می کند سایش نرم در این مرحله سطح نمونه با استفاده از پودر های کاربید سیلیسیم که بر ریو کاغذ های مخصوص تعبیه شده اند ساییده می شود ممکن است نمونه بصورت دستی روی کاغذ سنباده ای که روی یک سطح تخت نظیر یک تکه شیشه تخت قرار دارد ساییده شود همچنین ممکن است کاغذ سنباده روی سطح یک چرخ دوار افقی و تخت چسبانیده شده و سپس نمونه متالوگرافی روی آن قرار داده شود در هر دو روش معمولا از آب به عنوان یک روانساز استفاده می شود که باعث حمل ذرات جدا شده از سطح نیز می شود سه نوع ساینده با شماده های 320 ،400، 600 که در آنها به ترتیب اندازه ذرات کاربید سیلیسیم برابر 33 ، 23 ، 17 میکرون است مورد استفاده قرار می گیرند در هر یک از مراحل سایش اولیه نمونه بصورتی روی یک سطح حرکت داده می شود که خراش ها فقط دریک جهت تشکیل شود هنگام تعویض یک کاغذ سنباده نمونه به اندازه تقریبی 45 درجه دوران داده می شود که در نتیجه خراش های جدید تشکیل شده در روی سطح با خراش های قبلی زاویه می سازند سایش تا زمانی ادامه می یابد که خراش های تشکیل شده از مراحل قبل ناپدید شوند.پرداخت خشن این مرحله بسیار حساس است در حال حاضر ماده ساینده مورد استفاده برای عملیات پرداخت خشن پودر الماس با اندازه دانه تقریبی 6 میکرون است پودر الماس در خمیری قابل حل در روغن نگه داری و حمل نقل می شود در این مرحله مقدار کمی از این خمیر بر روی سطح یک چرخ دوار که با یک پارچه نایلونی پوشیده است قرار می گیرد روانساز مورد استفاده در حین عملیات پرداخت روغنی مخصوص است
فرمت : WORD تعداد صفحه :82
مقدمه :
معمولا سه مرحله مجزا در تحول بینیتی وجود دارد. این سه مرحله به طور شماتیک است. در ابتدا یک زیر وامه که تشکیل از یک صفحه فریتی است روی مرزدانه آشیت جوانه زنی کرده و تا زمانی که رشد آن توسط تغییر شکل پلاستیک آشیت زمینه متوقف نشده به رشد خود ادامه می دهد. در این مرحله زیر واحدهای جدید در نوک صفحه فریتی قبلی جوانه زنی کرده و رشد می کنند . مجموعه ای از چند زیر واحد را اصطلاحا یک شیف (Sheef) می گویند. سرعت متوسط طویل شدن یک شیف قاعدتا کمتر از یک زیر واحد است که علت آن وقفه های زمانی بین تکیل زیر واحدهای متوالی است . رسوبگذاری کاربید که در مرحله بعدی وقوع می یابد سرعت تحول را با حذف کربن از آشیت باقی مانده یا از فریت فوق اشباع متاثر می کند.
عبارات کلیدی
تعداد صفحات 24
فرمت فایل word
کامپوزیتها (مرکب) معمولاً در هواپیما به کار میروند. آنها نه تنها در سطوح کنترلی و تیزهگرها به کار میروند بلکه در ساختارهای اصی هم در هواپیمای نظامی، هم در هواپیمای تجاری مورد استفاده قرار میگیرند. ممکن است قبل از آنکه آلیاژی آلومینیومی از وضعیت خود به عنوان اولین مواد از اسکلت هواپیما آغاز گردد، اتفاقی بیفتد.
مرکبها همانند فیبر کربنی ـ کولار ـ لایههای تقویت شده از فایبرگلاس باعث پیشرفت طراحیهای اسکلت هواپیما در دستاندازها شدهاند و چند تولید کننده مجاز هواپیما این مرکبها را کاملاً پذیرفتهاند. بیشترین اعتبار یا تسهیل برای تولیدکنندگان متقاعد در کسب تجربه از مرکبها به ناسا مرتبط است (شکل 11ـ11 را ببینید)
با هر نسل جدیدی از هواپیماهای نظامی، کاربرد موارد کامپیوزیت (مرکبها) افزایش یافته است. هواپیمای جنگی در سال 1990 آماده گردید. این هواپیما به گونهای طراحی شده بود که از تمام مزیتهای کامپوزیت حداکثر استفاده را میکرد.
معمولاً، 10 درصد از وزن ساختار هواپیمای جنگی جدید، از قبیل F-16 یا F-18 از این کامپوزیتها ناشی میشود. این مقدار فقط درصدی برای تجارتیترین موارد حمل و نقل محسوب میشود، اما گرایشها به سمت کاربرد وسیعتر از کامپوزیها افزایش یافته است.
توسعه نسل دوم از کامپوزیها حدود تنشهای قابل قبول را توسعه میدهد خصوصاً در شرایط فشردهسازی (متراکم) در حالی که هدف اصل این کامپوزیها کاهش هزینههای تولید است. خسارت زیاد از خصوصیات تلرانس و عملکرد قابل قبول ترکیب ماتریکس ـ فیبر در شرایط محیطی از قبیل آن مواردی که در عملکرد مواجه میشویم را باید حفظ و نگهداری کنیم.
کاربرد کامپوزیهای زیر را فقط اشاره میکنیم: بعضی از آنها در تولید به کار میروند و بعضی فقط در امر توسعه. این بخش تمام کاربرد کامپوزیها را دربرنمیگیرد. بلکه چندین نمونه انتخاب شده از آنها را بررسی مینماید.
11ـ2 حمل و نقل تجاری در هواپیما
کاربرد کامپوزیتها در حمل و نقل تجاری عموماً در ماورای کاربرد نظامی عقب ماندهاند. زیرا:
1ـ هزینه مسئلهای مهمتر است.
2ـ امنیت مسئله مهمتری است هم برای تولیدکننده و هم برای نمایندگان مجاز دولت.
3ـ حفاظتی کلی به علت تجربیات گذشته در مورد جریمههای مالی از تجهیزات در زمان
مواد کامپوزیت به طور گسترده نه فقط برای عناصر درونی و بیرونی از قبیل لبههای حمله یا لبههای فرار، تیزهگیر، رادارپوشها، درهای ارابة فرود و غیره به کار میرود بلکه برای درون کابین در حمل و نقل تجاری نیز مورد استفاده قرار میگیرند.
تمام مواد درونی باید هم مقاومت اشتعال (اگر کاربرد داشته باشد) و هم شرایط نشر گاز ـ ترکیب و دود را برآورده سازد. به طور کلی، سیستم رزین فندلی برای کاربردهای درونی هواپیما به علت خصوصیات مقاومت عالی آن در برابر آتش به کار میرود.
تعداد صفحات 264
فرمت فایل word
بسپار مولکول بسیار بزرگی است که از بهم پیوستن تعداد
زیادی مولکولهای کوچک که تکپاره نامیده می شوند پدید می آید. به عبارتی
دیگر زنجیر زنجیر بلندی است که از تکرار واحدهای شیمیایی کوچک و ساده ساخته
شده است. به هر یک از این واحدهای تکراری پار (و در زبان انگلیسی mer) گفته می شود و از به هم چسبیدن بسیاری پار بسپار (Polymer)
ساخته می شود. فرایند تولید بسپار از تکپار را بسپارش می گویند. اغلب به
علت ساختار زنجیر وار به هم متصل می شود. از اصطلاح زنجیر بسپاری به جای
مولکول یا درشت مولکول بسپاری استفاده می شود. یک بسپار می تواند طول
زنجیرههای متفاوتی داشته باشد. بسپارهای تجاری عموما زنجیرهایی دارند که از
1000 تا 10000 واحد تکراری تشکیل شده اند. اگر تعداد واحدهای تکراری در
زنجیره خیلی زیاد نباشد ماده به صورت مایع خواهد بود و به آن چند پاره می
گویند. با افزایش واحدهای تکراری و در نتیجه افزایش وزن مولکولی حالت
فیزیکی ماده به سمت مایع گرانرو و در نهایت جامد تغییر شکل می دهد.
فهرست:
آشنایی با ساختار بسپارها
مقدمه
بلورینگی
رفتار گرمایی بسپارها
وزن مولکولی و توزیع وزن مولکولی
بلورینگی
اگر ساختار مولکول بسپار منظم بوده و فاقد گروه های جانبی بزرگ باشدزنجیرها می توانند به آسانی در کنار یکدیگر مستقر شوند و نظم یابند. مناطقی که در آهنها زنجیرهای بسپار در کنار هم منظم قرار می گیرند را نواحی بلوری می گویند. به بسپارهایی که ریخت بلوری و یا جهت یافتگی خاصی بین زنجیرهای آن مشاهده نشود بسپار بی ریخت یا بی شکل می گویند. میزان بلورین بودن یک بسپار یکی از عوامل مهم در تعیین خواص آن می باشد. بطور مثال شفافبت یکی از خواص ظاهری است که تابع بلورینگی استو
در بسپارهای شاخه ای وجود شاخه ها مانعی برای تشکیل نواحی بلورین است به همین دلیل در یک نوع بسپار که قابلیت بلورینگی دارد گونه های خطی آن نوع بسپار بلوری تر از گونه های شاخه ای همان بسپار بوده و خواص متفاوتی نیز خواهند داشت.
به هنگام فراورش و شکل دهی بسپارها این امکان هست که با تغییر شرایط فراورش میزان بلورینگی را در محصول نهایی تغییر داد چون نظم یابی زنجیرها در کنار هم یا بلورین شدن بسپار وابسته به شرایط دمایی و زمانی استو
برای مثال با افزایش بلورینگی در یک قطعه:
رفتار گرمایی بسپارها
در حالت کلی بسپارهای صنعتی را می توان به دو گروه گرمانرم و گرماسخت تقسیم کرد. گرمانرمها در بیانی ساده بسپارهایی هستند که در اثر گرما نرم شده و در بالاتر از یک دمای خاص جریان می یابند. به عبارتی دیگر در این مواد امکان لغزش زنجیره های بسپاری روی هم در اثر گرم شدن وجود دارد به طوری که درشت مولکولها از انرژی کافی جهت غلبه بر نیروهای بین مولکولی برخوردار هستند. بالطبع با سرد کردن این مواد سفت شده و زنجیره های آن از حرکت باز می ایستند.
گرمانرمها را می توان بارها گرم کرد و شکل داد. این مواد قابلیت حل شدن در حلال را نیز دارند. گرمانرومها از نظر تجاری مهمترین دسته مواد پلاستیکی هستند. 80% بسپارها در دنیا جزء گرمانرمها هستند. ساختار مولکولی گرمانرمها بصورت خطی یا شاخه ای است.
گرما سخت ها پلاستیکهایی هستند که در اثر گرما یا عوامل دیگری از قبیل تابش اشعه و رطوبت پخت شده و تبدیل به محصولاتی غیرقابل ذوب و انحلال می شوند. اصطلاح گرما سخت به این دلیل روی این مواد گذاشته شد که اولین پلاستیکهای شبکه ای ساخته شده در اثر گرما شبکه ای می شدند اما در چند دهه اخیر روشهای غیر گرمایی نیز برای شبکه ای کردن مواد استفاده می شود. رفتار گرمانرمها در برابر گرما با رفتار مواد کوچک مئلکول بسیار متفاوت است. بسپارها معمولا نقطه ذوب مشخصی ندارند و فرایند ذوب آنها در محدوده ای از دما صورت می گیرد. نواحی بی ریخت و بلورینه گرمانرم رفتارهای متفاوتی در مقابل گرما دارند. اگر یک ر بی ریخت را گرم کنیم به محدوده ای از دما می رسیم که در آن تحرک بخشهایی از زنجیر ممکن شده و بسپار نرم می شود. به این دما دمای انتقال شیشه ای (Tg) گفته می شود که از ویژگیهای مهم یک بسپار گرمانرم است. اگر به گرما دادن ادامه دهیم به جایی می رسیم که کل زنجیر امکان حرکت پیدا می کند. به این محدوده از دما که در آن زنجیرهای بسپار می توانند روی هم بلغزند دمای ذوب (Tm) گفته می شود.
تعداد صفحات 44
فرمت فایل word
مقدمه:
برای تولید ورقهای فلزی دو روش کلی وجود دارد یکی ریختهگری مداوم و یکی ریختهگری تکباری.
در ریختهگری مداوم چون حجم مذاب تولیدی بالا است مانند ذوب آهن اصفهان، مذاب با روش مخصوصی به طور پیوسته تبدیل به شمش شده و در ادامه شمش در همان دمای بالا نورد شده که در نهایت تبدیل به ورق میشود اما در کارگاههای تولید فولاد با ظرفیت تولید پایین چون حجم مذاب پایین است ابتدا مذاب را در قالبهای چدنی ریختهگری کرده و تختال تولید میکند و بعد شمش به واحد نورد منتقل میشود که پس از پیش گرم کردن تختال ، آن را نورد میکنند و تختال به ورقهای مورد نیاز تبدیل میشود.
قالبهایی که برای ریخته گری شمشها استفاده می شود چدنی وازنوع خاکستری انتخاب می شود که این انتخاب نیز بعلت انتقال حرارت خوب چدنهای خاکستری است .
در چدنهای خاکستری هر چه اندازه گرافیتها درشت تر باشد انتقال حرارت بیشتر
می شود واین امر باعث می شود که در برخورد اول به ذهن خطور کند که چون دمای
مذاب شمش بالاست پس هر چه گرافیتها درشتتر باشند انتقال حرارت افزایش می
یابد وموجب می شود که در مقابل شوک حرارتی مقاوم تر بوده ودیرتر ترک بخورد
واین امر موجب افزایش عمر قالب شود .
ولی بعد از انجام این پژوهش به این نتیجه رسیدیم که این تصور غلط است زیرا در شرایط کارکردی این قالب ها خستگی حرارتی در قالب ایجاد می شود واین خستگی حرارتی باعث ترک خوردن وشکستن قالب ها می شود پس برای اینکه از ترک خوردن قالب ها جلوگیری کنیم باید جلوی مکانیزم جوانه زنی ترک خستگی ورشد آن را بگیریم که این مستلزم این می شود که برای جلوگیری از جوانه زنی ترک سطح را سخت کنیم و نیز برای جلوگیری از رشد ترک استحکام مغز قالب را افزایش دهیم که برای افزایش دادن استحکام مغز قالب باید گرافیتهای ورقه ای را ریز کرد پس برای افزایش عمر قالب باید اندازه گرافیتها را توسط جوانه زنی کنترل کرد .
عیب دیگری که در این قالب ها بوجود می آیدخوردگی بر اثر فشار وحرارت مذاب شمش است که این مشکل را باید با انتخاب پوششی مناسب بر طرف کرد .