در یک محلول ، معمولا جزئی که از لحاظ کمیت بیشترین مقدار را دارد، حلال و سایر اجزا را مواد حل شده
(حل شونده) میگوییم. اما گاهی آسانتر آن است که جزئی از محلول را با آنکه
مقدارش کم است، حلال بنامیم و گاهی اصولا اطلاق نام حلال و حل شونده به
اجزای یک محلول (مثلا محلولهای گازی) چندان اهمیتی ندارد. بعضی از مواد به
هر نسبت در یکدیگر حل میشوند.
امتزاج پذیری کامل از ویژگیهای اجزای تمام محلولهای گازی و بعضی از اجزای
محلولهای مایع و جامد است. ولی غالبا، مقدار ماده ای که در حلال معینی حل
می شود، محدود است. انحلال پذیری یک ماده در یک حلال مخصوص و در دمای معین،
بیشترین مقداری از آن ماده است که در مقدار معینی از آن حلال حل می شود و
یک سیستم پایدار به وجود می آورد.
برای یک محلول معین ، مقدار ماده حل شده در واحد حجم حلال یا در واحد حجم محلول را غلظت ماده حل شده میگوییم. مهمترین نوع غلظتها که در آزمایشگاه بکار میرود مولاریته و نرمالیته است. مولاریته عبارت است از تعداد مولهای یک ماده که در یک لیتر محلول وجود دارد. به همین دلیل آن را مول بر لیتر یا M/L میگیرند. نرمالیته یک محلول عبارتست از تعداد هم ارز گرمهای (اکی والان گرم های) ماده موجود در یک لیتر محلول. نرمالیته را با N نشان میدهند.
محلولهایی که غلظت ماده حل شده آنها نسبتا کم است.
محلولهایی که غلظت نسبتا زیاد دارند.
اگر مقدار ماده حل شده در یک محلول برابر با انحلال پذیری آن در حلال باشد، آن محلول را محلول سیر شده مینامیم. اگر به مقداری از یک حلال مایع ، مقدار زیادی ماده حل شونده (بیشتر از مقدار انحلال پذیری آن) بیفزاییم، بین ماده حل شده و حل شونده باقیمانده تعادل برقرار میشود. ماده حل شونده باقیمانده ممکن است جامد ، مایع یا گاز باشد. در تعادل چنین سیستمی ، سرعت انحلال ماده حل شونده برابر با سرعت خارج شدن ماده حل شده از محلول است. بنابراین در حالت تعادل ، غلظت ماده حل شده مقداری ثابت است.
در عمل تیتر کردن ، محلول استاندارد را از یک بورت به محلولی که باید غلظت آن اندازه گرفته میشود، میافزایند و این عمل تا وقتی ادامه دارد تا واکنش شیمیایی بین محلول استاندارد و تیتر شونده کامل شود. سپس با استفاده از حجم و غلظت محلول استاندارد و حجم محلول تیتر شونده ، غلظت محلول تیتر شونده را حساب میکنند.
نقطه اکیوالان در عمل تیتر کردن NaCl با نقره تیترات وقتی مشخص میشود که برای هر وزن فرمولی -Cl در محیط یک وزن فرمول +Ag وارد محیط عمل شده باشد و یا در تیتر کردن ، سولفوریک اسید (H2SO4 ) با سدیم هیدروکسید ( NaOH ) نقطه اکیوالان وقتی پدید میآید که دو وزن فرمولی اسید و دو وزن فرمولی باز وارد محیط عمل شوند.
نقطه اکیوالان در عمل بوسیله تغییر فیزیکی ( مثلا تغییر رنگ ) شناخته میشود. نقطه ای که این تغییر رنگ در آن روی میدهد، نقطه پایان تیتر کردن است. در تیتراسیون اسید و باز شناساگرها برای تعیین زمان حصول نقطه اکیوالان بکار میروند. تغییر رنگ معرف ، نشانگر نقطه پایانی تیتراسیون میباشد.
تهیه محلول بافر (اسیدی)
یک محلول بافر را میتوان از یک اسید ضعیف یا یک باز ضعیف و نمکی از الکترولیت ضعیف تهیه کرد. مثلا ، میتوان بافری از اسید استیک و استات سدیم تهیه کرد. اگر از این دو ماده به غلظت یکسان مثلا 1M داشته باشیم. در نتیجه:

از آنجا که با غلظت
و
برابر است، غلظت
برابر با
میشود و PH برابر 4.74 خواهد بود. PK یک الکترولیت ضعیف را میتوان به طریقی مشابه با PH تعریف کرد:

محلولی از یک اسید ضعیف که در آن غلظت آنیون برابر غلظت اسید تفکیک نشده باشد، PH آن برابر
اسید است. در نمونه بافری که شرح داده شد، مقادیر
و
نسبت به مقدار
موجود 50 مرتبه بیشتر است.
پیوسته کوچکترین ها مهمترین هایند و این را بشر سالهاست که درک کرده و بنا بر همین تفکرمی گوید باید ریز بین بود در انجام هر کاری در دیدن هر چیزی باید دقت نمود. حال این بادقت بودن و ریز بین بودن خواه اتم باشد یا حاشیه های یک کتاب و به همین ترتیب می توان گفت که پشتوانه ی بودن ، انجام دادن و حتی بزرگترین اتفاقات عالم بدون وجود ذرات محال اند در کتاب شیمی 2 به اتم ها وذرات زیر اتمی پرداخته شده است و ما سعی کردیم در این تحقیق مباحثی از این کتاب را مطرح نموده و درباره ی آن مقداری هرچند اندک توضیح دهیم . امیدواریم این مطالب نورد تایید شما قرار گیرد .
بانشکر مرضیه بزرگی
اولین دانشمندی که عناصر را طبقه بندی کرد مندلیف روسی بود.
مندلیف به تغییرات خواص عناصر توجه نمود. او با بیان قانون تناوبی جدول خود را عرضه کرد.
مندلیف در تنظیم جدول دو اصل را رعایت کرد.
مندلیف عناصر شناخته شده زمان خود را در چند ردیف (دوره ـ تناوب) براساس افزایش جرم اتمی از چپ به راست منظم نمود. به گونه ای که عناصر با خواص مشابه زیر یکدیگر در یک ستون قرار بگیرند.
دید کلی
هر چند که در ساده ترین تعریف، رادیکال آزاد، هر یک از مولکولها و اتمهایی است که دارای یک الکترون جفت نشده باشند. ولی باید توجه داشت که مولکولهایی مانند اکسید نیتریک و اکسیژن نیز از این قاعده پیروی میکنند، لکن بصورت عادی نمیتوانند از باب رادیکالهای آزاد مطرح باشند بنابراین این اصطلاح (یعنی رادیکال آزاد) شامل مولکولهای عادی پایدار نمیشود. از جمله رادیکالهای آزاد ساده میتوان به CH3 ,CN ,OH ,Cl ,H اشاره کرد. چنینی رادیکالهایی از اهمیت فوق العادهای در واکنشهای گرمایی و فتوشیمیایی، پلیمریزاسیون و احتراق برخوردارند. آنها در هر دو فاز مایع و گازی دارای اهمیت میباشند، لکن به هر حال دستگاههای فاز گازی بسیار ساده تر بوده و تفسیر قاطعانهتری را اجازه میدهند. با وجود این حتی در فاز گازی، روشهای تجربی بناچار پیچیده و غیر مستقیم هستند، زیرا موادی با چنین طول عمر کوتاه را نمیتوان در غلظتهای زیاد تهیه کرد. بنابراین چنین عواملی، امکان تهیه، ارزیابی و شناسایی رادیکالها را با اشکالات بسیار زیاد مواجه میسازد.
تاریخچه
در طول قرن نوزده میلادی غالبا رادیکالهای آزاد بصورت ناصحیح بعنوان اصل مسلم در نظر گرفته میشدهاند. فرضیه آووگادرو بوسیله شیمیدانان مواد آلی آن زمان بصورت جدی مورد توجه واقع نشده بود و موادی مانند C2H6 غالبا بصورت CH3 توصیف میگردید. با پایان یافتن قرن نوزده میلادی، این وضعیت مورد بررسی قرار گرفت و امکان موجودیت رادیکالهای آزاد، با کشف تریفنیلمتیلرادیکال بوسیله گامبرگ "Moses Gomberg" به وضوح تایید شد. پس از این تاریخ بسیاری از رادیکالهای آزاد کشف و چنینی ترکیباتی در مکانیزمهای شیمی آلی بعنوان یک اصل پذیرفته شد.
مواد منفجره موادی هستند که از نظر شیمیایی ناپایدار هستند و در صورت آغاز فرایند انفجار، با سرعت زیادی منبسط میشوند و حجم زیادی گاز (و نیز نور و صدای زیاد) تولید میکنند. این آزادشدن گاز به نوبهٔ خود میتواند باعث پرتاب شدن قطعات و اشیاء اطراف و تبدیل شدن آنها به ترکش شود.
مواد منفجره شیمیایی از دو جز اکسید کننده و سوخت تشکیل شدهاند. هر مادهٔ سوختی، در حرارت مناسب و در مجاورت اکسیژن آتش میگیرد و شروع به سوختن میکند. اما به دلیل اینکه در هوا، اکسیژن به صورت خالص وجود ندارد، سوختن این مواد به تدریج صورت میگیرد. در مواد منفجره، در کنار سوخت، ماده اکسید کننده اضافه میشود. ماده اکسید کننده، مثل پرمنگنات پتاسیم، در هنگام واکنش مقدار زیادی اکسیژن آزاد میکند و این اکسیژن با سوخت ترکیب شده و باعث واکنش ناگهانی کل سوخت میشود و انفجار به وجود میآید، بدین دلیل مواد منفجره برای واکنش نیازی به هوا ندارند و اکسیژن مورد نیاز خود را از درون خود تأمین میکنند. از مواد منفجره در امور تسلیحاتی، حفر تونل و... استفاده میشود. یکی از مشهورترین مواد منفجره، تی-ان-تی است.
دسته بندی مواد منفجره
مواد انفجاری به دو دسته سریع (تند) و کند تقسیم میشوند.
همچنین مواد تند سوز خود به دو دسته آغاز گر(Initial Explosive) و غیر آغاز گر(None Initial Explosive) تقسیم میشوند.
اسیدهای چرب
اجزای اصلی سازنده لیپیدها را مونوکربوکسیلیک اسیدها با تعداد کربن زیاد (4 تا 30 کربن) در یک زنجیره دراز تشکیل میدهند. اسیدهای چرب حاصل از منابع جانوری ، ساختار سادهای دارند و تعداد کربن آنها بین 14 تا 20 متغیر است. در حالی که اسیدهای چرب گیاهی بسیار پیچیدهتر میباشند و عواملی مانند اپوکسی ، هیدروکسی ، کتو و حلقههای سیکلوپروپان به مولکولهای آنها افزوده شدهاند. اسیدهای چرب به علت سمی بودن به صورت آزاد بسیار کم دیده میشوند و اکثرا با ایجاد ترکیب استرهای اکسیژن در ساختار لیپیدها شرکت میکنند.
علاوه بر نقش اصلی لیپیدها به عنوان مواد انرژی زا می باشند. بسیاری از نقش های چربی ها به عنوان واسطه های لیپوژنیتیکی و پیام رسان های ثانویه در فرایند هدایت علامتنی می باشد. یک بررسی از این عملکرد ها نیز ارائه می شود .
هضم : جذب و انتقال لیپیدهای رژیمی
هضم و جذب لیپیدهادر غیر نشخوارکنندگان
لیپیدها یی که بوسیله حیوانات غیر نشتخوار گر مصرف می شوند عمدتا تری گلیسریدها هستند به استثنای حیوانات علفخوار از قبیل اسب ها و خرگوش ها میتوانند مقادیر قابل توجهی از گالا کتولیپیدها از مواد رویشی مصرف کننده فعالیت پروتیولیتیک در دوره می باشند که به رها نمودن لیپیدها از ماتریس های تغذیه کمک می کند و شرایط اسیدی و فعالیت تکان دهنده ای که به وسیله حرکات دودی معده انجام می شود. لیپیدها خاصیت امولسیون ریزی لیپاز در معده را دارند که می تواند ناشی از آنزیم هایی باشد که تجزیه می شوند و بوسیله غدد بزاقی ترشح می شوند لیپاز بزاقی به همراه ناحیه فوندوس معده انجام می شود . لیپاز بزاقی دارای فعالیت هیدرولیک مشخصی در PH نزدیک به لیپاز معده است لیپاز معده ای فعالیت های بهتری در حیوانات نوزاد وجود دارد وو فعالیت هیدرولیتیک بهتری در جهت تری گلیسرید شیر نسبت به لیپاز لوزالمعده ای دارد. لیپاز معده ای عمدتا به زنجیز های اسیدهای چرب بازنجیره متوسط و کوتاه حمله می کند دروضعیت sn-3 تری ا سیل گلیسرول از قبیل انهایی که در شیر نشخوار کنندگان و خوک ها شایع است میباشد.
|
گوگرد یکی از اجزای باروت میباشد . همچنین گوگرد برای جوشکاری لاستیک به کار میرود . گوگرد به عنوان ماده از بین برنده قارچ و همچنین ضد عفونی کننده و کود به کار میرود گوگرد برای تهیه اسید سولفوریک مورد استفاده قرار میگیرد . گوگرد همچنین برای ساختن چندین نوع کاغذ ، ماده سفیدکننده و به عنوان عایق الکتریکی به کار میرود . گوگرد عنصری است که برای زندگی لازم است . ترکیبات گوگرد بسیار سمی است ، برای مثال مقدار کمی سولفید هیدروژن میتواند متابولیز بدن را دگرگون کند اما مقادیر بیشتر آن میتواند بسرعت باعث مرگ از راه فلج تنفسی شود . سولفید هیدروژن با سرعت حس بویایی را از بین میبرد . دیاکسید گوگرد آلودهکننده مهم جوی میباشد . |
|
گوگرد در سنگهای آسمانی ، در مجاورت چشمههای جوشان و همچنین آتشفشانها یافت میشود . گوگرد همچنین در بسیاری از مواد معدنی از جمله سرب معدنی ، سولفید آهن و همچنین سولفات باریم طبیعی یافت میشود . گوگرد همچنین در نفت خام و گازهای طبیعی وجود دارد . مرحله فرشْ ممکن است برای به دست آوردن گوگرد تجاری مورد استفاده قرار بگیرد . در این مرحله آب گرم با فشار وارد چاههای پرنمک میشود (به منظور ذوب کردن گوگرد ) آنگاه آب به سطح زمین آورده میشود . |
مفاهیم وابسته :
مقدمه :
مطالعه ی عواملی که بر سرعت واکنش های شیمیایی مؤثرند ، علاوه بر دیدگاه تئوری از نظر صنعتی نیز حائز اهمیت است . چرا که می توان شرایط عمل را برای مناسب ترین حالت پیش بینی کرد .
کلیه ی برخورد های بین مولکول ها منجر به واکنش نمی شود ، بلکه با مقایسه ی کل برخورد های محاسبه شده در واحد زمان با سرعت مشاهده شده یک واکنش ، ملاحظه می شود که تنها کسر کوچکی از آنها مؤثر می باشند . وقتی در مورد یک واکنش معین در اثر تغییر یکی از شرایط آزمایش ، عده ی کل برخورد ها در واحد زمان ، یا تعداد برخورد های مؤثر و یا ترکیبی از این دو عامل بیشتر می شود ، سرعت واکنش افزایش می یابد . سرعت اکثر واکنش های شیمیایی با ازدیاد دما افزایش می یابد . همچنین غلظت موادی که بر هم اثر می کنند نیز در آن مؤثر است ، زیرا با ازدیاد غلظت یکی از اجزا ، تجمع مولکول ها در یک حجم معیین بیشتر شده ، عده ی کل برخورد ها در واحد زمان افزایش می یابد ، لذا سرعت واکنش بیشتر می شود . کاتالیزور نیز از دیگر ترمودینامیک عوامل مؤثر بر سرعت واکنش می باشد .
سینتیک :
مبحث سینتیک مکمل مبحث ترمودینامیک است . ترمودینامیک می تواند انجام پذیر بودن یا نبودن واکنش را پیش بینی کند . واکنش هایی که از لحاظ ترمودینامیک مجاز می باشند را از لحاظ سینتیکی بررسی می کنیم ، زیرا ممکن است سرعت واکنش به قدری کُند باشند که عملاً آنها را بی اثر بدانیم .
اختلاف ترمودینامیک و سینتیک در بررسی پدیده های مختلف در چند مورد است :