آزمایش کشش از معمولترین و ساده ترین آزمایشهاست که به کمک آن نه فقط میتوان درباره رفتار الاستیکی و پلاستیکی مواد مختلف پیشگویی کرد، بلکه میتوان تعداد زیادی از خواص مکانیکی مواد از قبیل انعطاف پذیری ، مقاومت کششی، حد الاستیکی، مدو الاستیکی، حد تسلیم و استحکام شکست که برای کاربرد صنعتی مواد حائز اهمیت هستند را تعیین کرد.
در این آزمایش نمونه تهیه شده از جسم مورد نظر را روی یکی از انواع دستگاههای آزمایش کشش تحت تاثیر نیروی کشش، که با سرعت یکنواختی تا موقع شکست یا پاره شدن نمونه بر ان وارد می شود، قرار می دهیم. (شکل 1)
نمونه های آزمایش کشش به شکلهای استاندارد شده گرد و یا مسطح هستند. (شکلهای 1-2 و 1-3)
نمونه ها باید صاف و عاری از هرگونه شیار و یا زدگی باشند. طراحی نمونه های استاندارد شده باید طوری باشد که نمونه در موقع وارد آمدن نیرو بر آن تحت تاثیر نیروی تک محوری بوده و تنش محوری به صورت همگن و یکنواخت بر روی سطح مقطع توزیع شده و از به وجود آمدن تمرکز تنش در محلهای اتصال نمونه به دستگاه جلوگیری شود.
در هنگام آزمایش مقدار نیرو و تغییر طولهای مربوط به آنها اندازه گیری و بر روی نموداری رسم می شود. (شکل 1-4) در قسمت OA نمونه کاملاَ در حالت الاستیکی خالص است و بین افزایش نیرو و تغییر طول تناسب خطی برقرار است که به کمک مدول الاستیکی و رابطه هوک تعیین می شود. بدین جهت این قسمت از منحنی خط هوک هم نامیده می شود و نقطه A انتهای قسمت الاستیکی و نقطه شروع تغییر شکل پلاستیکی را نشان میدهد.
در قسمت تغییر شکل پلاستیکی مقدار نیرو همواره به طور پیوسته افزایش می یابد و در نقطه B به حداکثر خود می رسد. از نقطه B به بعد در موضعی از نمونه، سطح مقطع شروع به باریک شدن می کند در نتیجه نیرو هم کاهش می یابد، تا نقطه C که در آن نقطه نمونه می شکند. نمودار تنش – تغییر طول نسبی (کرنش) مهندسی از نمودار نیرو – تغییر طول با تقسیم مقدار آن به ترتیب به سطح اولیه (
) و طول اولیه (
) به دست آمده و کاملاَ مشابه آن است. مقدار حداکثر تنش در نمودار تنش – تغییر طول نسبی یا کرنش، یعنی
استحکام یا مقاومت کششی نامیده می شود.
تاریخچه
اصول طیف سنجی جرمی ، جلوتر از هر یک از تکنیکهای دستگاهی دیگر ، بنا نهاده شده است. تاریخ پایه گذاری اصول اساسی آن به سال 1898 بر میگردد. در سال 1911 ، "تامسون" برای تشریح وجود نئون-22 در نمونهای از نئون-20 از طیف جرمی استفاده نمود و ثابت کرد که عناصر میتوانند ایزوتوپ داشته باشند. تا جایی که میدانیم، قدیمیترین طیف سنج جرمی در سال 1918 ساخته شد.
اما روش طیف سنجی جرمی تا همین اواخر که دستگاههای دقیق ارزانی در دسترس قرار گرفتند، هنوز مورد استفاده چندانی نداشت. این تکنیک با پیدایش دستگاههای تجاری که بسادگی تعمیر و نگهداری میشوند و با توجه به مناسب بودن قیمت آنها برای بیشتر آزمایشگاههای صنعتی و آموزشی و نیز بالا بودن قدرت تجزیه و تفکیک ، در مطالعه تعیین ساختمان ترکیبات از اهمیت بسیاری برخوردار گشته است.
این فلز عمدتا" به شکل آزاد و بصورت تکههایی در سنگها و رسوبهای آبرفتی وجود دارد و یکی از فلزات ضرب سکه میباشد. طلا در بسیاری از کشورها بعنوان معیار ارزش پول بکار میرود. همچنین در جواهرات ، دندانپزشکی و الکترونیک مورد استفاده قرار میگیرد.
تاریخچه
طلا ( از واژه سانسکریت Jval ؛ آنگلوساکسون gold ؛ لاتین aurum که همگی به معن طلا هستند ) را از دوران باستان شناخته و به ارزش بالای آن پی بردند. هیروگلیف مصری از 2600 قبل از میلاد این فلز را توصیف کرده و در کتاب عهد عتیق بارها به طلا اشاره شده است. زمان زیادی است که طلا یکی از گرانقیمتترین فلزات به حساب آمده و قیمت آن در تاریخ ، معیار بسیاری از پولهای رایج میباشد ( تحت عنوان پایه طلا شناخته میشود ).
از طلا بعنوان نمادی برای پاکی ، ارزش ، سلطنت و مخصوصا" نقشهایی که ترکیبی از این ویژگیها است استفاده میشود. نخستین هدف کیمیاگران ، تولید طلا از سایر مواد مانند سرب بود، اگرچه کیمیاگران هرگز موفق به این کار نشدند. گیمیاگران نشانه طلا را دایره و نقطهای در وسط میدانند و همچنین نشان ستاره شناسی هم هست.
در بسیاری از مسابقات به نفر اول مدال طلا ، به نفر دوم نقره و به نفر سوم برنز جایزه میدهند. بیشترین مقدار طلا در جهان در بانک مرکزی دولت فدرال آمریکا وجود دارد. در طی قرن نوزدهم هر جا ذخایر بزرگ طلا کشف میشد، هجوم طلا رخ میداد. از جمله هجوم طلای کالیفرنیا ، کلرادو ، اتاگو ، استرالیا ، Black Hills و کلوندایک.
پیدایش
طلا بخاطر سکون شیمیایی نسبی که دارد، بیشتر بصورت فلز محلی و ندرتا" به شکل تکههای بزرگ یافت میشود، اما معمولا" بصورت ذرات بسیار ریزی در برخی مواد معدنی ، رگههای کوارتز ، سنگ لوح ، صخره های دگردیسی و رسوبات آبرفتی که از این منابع سرچشمه گرفتهاند، دیده میشود. طلا بطور گسترده ای پراکنده شده و بیشترهمراه کوارتز یا پیریت است و در کانیهای پتزیت ، کالاوریت و سیلوانیت با تلوریم ترکیب شده است.
این عنصر با روشهای بهره برداری از رسوبات دارای طلا از رسوبات جدا میشود. آفریقای جنوبی منبع تقریبا" 2,3 ذخائر طلای جهان است ( منابع موجود در داکوتای جنوبی و نوادا دو سوم طلای مصرفی آمریکا را تامین میکنند ). طلا را با استفاده از سیانور ، آمالگام و گداختن از کانیها خارج میکنند.
در آغاز قرن بیستم، نفت و گاز طبیعی کمتر از 4 درصد از کل نیاز انرژی جهان غرب را تأمین می کرد؛ حال آن که زغال سنگ تقریباً 90 درصد از این نیاز را برآورده می کرد. اما این وضع به سرعت تغییر کرد و سهم نفت و گاز طبیعی از کل تولید انرژی در سال 1920 به 12 درصد و در نیمة دهة 1930 به 26 درصد و پس از جنگ جهانی دوم در سال 1948 به 36 درصد رسید. از آن زمان به بعد ، اهمیت نفت و فرآورده های نفتی برای اقتصاد جهان همواره رو به افزایش بوده است، چنان که تا سال 1970 ، تقریباً 70 درصد از کل نیاز انرژی غرب را نفت و گاز طبیعی تأمین می کرد.
مصرف کنندگان عمدة نفت و فرآورده های وابستة آن،ملل صنعتی اروپای غربی، آمریکای شمالی و ژاپن هستند که روی هم رفته 70 درصد از کل تولید را در سال 1970 به خود اختصاص می دادند. در عین حال، همین کشورها فقط 26 درصد از نفت و گاز جهان را خود تولید می کنند و بنابراین مجبورند نیازهای خود را با نفت وارداتی تأمین کنند. بنابراین گونه ای رابطة همزیستی متقابل بین کشورهای اصلی تولید کننده و کشورهای مصرف کننده ایجاد شده است.
خاورمیانه، منطقة تولید کنندة نفت[1]
در حال حاضر، خاورمیانه منطقه ای است که در آن تولید نفت در حد قابل ملاحظه ای بیشتر از تقاضاست. طی قرن بیستم، تولید نفت این منطقه برحسب تولید کل جهانی به طور مشخص افزایش یافته است. در دهة 1930 و اوایل دهة 1940 ، میانگین سطح تولید بین دو تا پنج درصد از کل تولید جهان بود، اما در پی احیاء و توسعة صنعت پس از جنگ در منطقة خلیج (فارس)، تولید نفت تا سال 1950 به میزان 15 درصد رسید. از آن تاریخ ، اهمیت نسبی نفت و گاز طبیعی خاورمیانه و آفریقای شمالی در تولید جهانی همواره رو به افزایش بوده است، به گونه ای که در سال 1960 از مرز 25 درصد گذشت و در سال 1971 به میزان 40 درصد رسید، در این سال تولید کل نفت منطقه متجاوز از 1000 میلیون تن می شد.[2]
اگر چه در خاورمیانه تولید نفت اول بار در اوایل قرن بیستم در ایران آغاز شد، اما فقط پس از جنگ جهانی دوم بود که تولید آن به سرعت رو به افزایش گذاشت . طی اوایل دهة 1940، ایران بزرگترین تولید کنندة نفت در خاورمیانه بود و پس از آن عراق و عربستان سعودی در مراتب بعدی قرار می گرفتند. پس از کشف و توسعة منابع نفتی در مقیاسی وسیع، تولید نفت کویت و عربستان سعودی هر دو ، به مقدار زیادی افزایش یافت تا سال 1950 که تولید حوزه های نفتی عربستان تقریباً با تولید حوزه های نفتی ایران برابر شد. در سال 1951، صنعت نفت ایران ملی شد و در نتیجه تولید نفت خام در سال بعد به کمتر از دو میلیون تن کاهش یافت و بدین ترتیب عربستان سعودی و کویت به عنوان دو تولید کندة اصلی خاورمیانه در صدر قرار گرفتند. طی دهة 1955 تا 1965، کویت بزرگترین تولید کنندة نفت شد و پس از آن، عربستان و ایران در رده های بعدی قرار گرفتند. افزایش وسیع تولید نفت در ایران از سال 1954 به بعد، پس از رفع مناقشه بین شرکتهای نفتی و حکومت ایران، آغاز شد. طی سالهای آخر دهة 1960، میزان تولید در کشورهای ایران و عربستان سعودی از میزان تولید نفت کویت فراتر رفت و این دو کشور برای کسب مقام اول در تولید به رقابت برخاستند.
1- همان منبع صفحه 345.
1- همان منبع صفحه 346.
در گذشته، با فاصلة کمی از این مکان، کاشفان در جست و جوی طلا بودند و اکنونشیمیدانان در حال تحقیق بر روی چیزهایی هستند که حتی ممکن است با ارزشتر از طلاباشند. آنها در مورد موجوداتی ذرهبینی تحقیق میکنند که قادر به زندگی و حتی رشد دردماهای بسیار زیاد استخرهای داغ یلواستون و مخازن آب گرم هستند و امیدوارند که ازاین موجودات، پروتئینهای مقاوم نسبت به حرارت به دست آورند. چنین پروتئینهاییقادر به کاتالیز یا تسریع واکنشهای شیمیایی صنعتی در دماهای بسیار بالا هستند؛ وهمچنین امکان اصلاح پودرهای شوینده به وسیلة این پروتئینها وجود دارد. کمک بهتصفیة فاضلاب داغ حاصل از کارخانهها، از دیگر فواید این ماده است. ارزش محصولاتشیمیایی ساخته شده از پروتئینهای گرمادوست را میتوان بیش از 12 میلیارد دلاربرآورد کرد.
شیمیدانان فوق ، در آزمایشگاه خود واقع در شرکت فنآوری زیستی دایورسا درسان دیگو، با راه انداختن بالنها و لولههای آزمایشگاهیشان، به تجزیه و تحلیل گنجشیمیایی خواهند پرداخت. آنها برای انجام چنین کاری، سنت کیمیاگری 1500 سال پیشرا دنبال خواهند کرد.
امام جعفر صادق علیه السلام (148 ـ 82 هـ . ق. / 770 ـ 705 م(
محضر پر فیض حضرت امام صادق (ع) ، مجمع جویندگان علوم بود. با دانش پژوهی که به محفل آن حضرت راه مییافت از خرمن لایزال دانش او بهره مند میشد. در علم کیمیا ایشان نخستین کسی بودند که عقیده به عناصر چهارگانه (عناصر اربعه) آب ، آتش ، خاک و باد را متزلزل کردند. از فرمودههای ایشان است که : «من تعجب میکنم مردی چون ارسطو چگونه متوجه نشده بود که خاک یک عنصر نیست. بلکه عنصرهای متعددی در آن وجود دارد.» ایشان هزار سال پیش از پرسینلی ، لاووازیه و ... دریافته بود که در آب چیزی هست که میسوزد (که امروزه آن را هیدروژن مینامند.
از امام صادق (ع) ، رسالهای در علم کیمیا تحت عنوان «رسالة فی علم الصناعة و الحجر المکرم» باقیمانده که دکتر «روسکا» آن را به زبان آلمانی ترجمه و در سال 1924 آن را تحت عنوان «جعفر صادق امام شیعیان ، کیمیاگر عربی» در «هایدبرگ» به چاپ رسانده است. به عنوان مثال و برای آشنایی با نظرات حضرت صادق (ع) در شیمی ، خلاصهای از بررسی دکتر «محمد یحیی هاشمی» را در ذیل درج میکنیم:
از شرحی که امام صادق (ع) برای اکسید میدهد، چنین معلوم میشود که اکسید جسمی بوده که از آن برای رفع ناخالصی در فلزات استفاده شده است. ایشان تهیه اکسید اصغر (اکسید زرد) را از خود و آهن و خاکستر به کمک حرارت و با وسایل آزمایشگاهی آن دوره ، مفصلا شرح داده و نتیجه عمل را که جسمی زرد رنگ است، اکسید زرد نام نهادهاند. این شرح کاملا با فروسیانید پتاسیم که جسمی است زرد رنگ به فرمول Fe(CN)6] K4] منطبق است و ... . نتیجه عمل بعد از طی مراحلی ایجاد و تهیه طلای خالص است. امروزه نیز از همین خاصیت سیانور مضاعف طلا و پتاس برای آبکاری با طلا استفاده میشود.
جابر بن حیان (200 ـ 107 هـ . ق / 815 ـ 725 میلادی(
جابربین حیان معروف به صوفی یا کوفی ، کیمیاگر ایرانی بوده و در قرن نهم میلادی میزیسته و بنا به نظریه اکثریت قریب به اتفاق کیمیاگران اسلامی ، وی سرآمد کیمیاگران اسلامی قلمداد میشود. شهرت جابر نه تنها به جهان اسلام محدود نمیشود و غربیها او را تحت عنوان «گبر» میشناسند.ابن خلدون درباره جابر گفته است:
جابربن حیان پیشوای تدوین کنندگان فن کیمیاگری است.
جابربن حیان ، کتابی مشتمل بر هزار برگ و متضمن 500 رساله ، تالیف کرده است. «برتلو» شیمیدان فرانسوی که به «پدر شیمی سنتز» مشهور است، سخت تحت تاثیر جابر واقع شده و میگوید: «جابر در علم شیمی همان مقام و پایه را داشت که ارسطو در منطق .» جورج سارتون میگوید: «جابر را باید بزرگترین دانشمند در صحنه علوم در قرون وسطی دانست.» اریک جان هولیمارد ، خاورشناس انگلیسی که تخصص وافری در پژوهشهای تاریخی درباره جابر دارد، چنین مینویسد:
جابر شاگرد و دوست امام صادق (ع) بود و امام را شخصی والا و مهربان یافت؛ بطوری که نمیتوانست از او جدا ولی بی نیاز بماند. جابر میکوشید تا با راهنمایی استادش ، علم شیمی را از بند افسانههای کهن مکاتب اسکندریه برهاند و در این کار تا اندازهای به هدف خود رسید. برخی از کتابهایی که جابر در زمینه شیمی نوشته عبارتند از : الزیبق ، کتاب نارالحجر ، خواص اکسیرالذهب ، الخواص ، الریاض و ... .
وی به آزمایش بسیار علاقمند بود. از این رو ، می توان گفت نخستین دانشمند اسلامی است که علم شیمی را بر پایه آزمایش بنا نهاد. جابر نخستین کسی است که اسید سولفوریک یا گوگرد را از تکلیس زاج سبز و حل گازهای حاصل در آب بدست آورد و آن را زینت الزاح نامید. جابر اسید نیتریک یا جوهر شوره را نیز نخستین بار از تقطیر آمیزهای از زاج سبز ، نیترات پتاسیم و زاج سفید بدست آورد.
علم شیمی با ترکیب و ساختار مواد و نیروهایی که این ساختارها را بر پا نگه داشته است، سروکار دارد. خواص فیزیکی مواد از این رو مورد مطالعه قرار میگیرند که سرنخی از مشخصات ساختاری آنها را بدست میدهند و به عنوان مبنایی برای تعیین هویت و طبقهبندی بکار میروند و کاربردهای ممکن هر ماده بخصوص را مشخص میکنند. اما واکنشهای شیمیایی ، کانون علم شیمی هستند. توجه علم شیمی به هر گوشه قابل تصوری از این تغییر و تبدیلها کشیده میشود و شامل ملاحظاتی است از این قبیل:
شیمی جدید که در اواخر سده هیجدهم ظاهر شده است، طی صدها سال ، توسعه یافته است. داستان توسعه شیمی را تقریبا به پنج دوره میتوان تقسیم کرد:
این فنون تا 600 سال قبل از میلاد مسیح رایج بوده است. تولید فلز از کانهها ، سفالگری ، تخمیر ، پخت و پز ، تهیه رنگ و دارو فنونی باستانی است. شواهد باستان شناسی ثابت میکند که ساکنان مصر باستان و بینالنهرین در این حرفهها مهارت داشتهاند. ولی چگونه و چه وقت این حرفهها برای نخستین بار پیدا شدهاند، معلوم نیست.
صفحه
درباره نانو تکنولوژی................................... 1
انواع رویکردهای نانو تکنولوژی.......................... 8
فناوری نانو در آینده نه چندان دور ..................... 8
نانو تکنولوژی در ایران................................. 9
کاربردهای نقاط کوانتومی................................ 10
میکروسکوپ پیمایشگر الکترونی SEM....................... 12
جداسازی مولکول ها از یکدیگر............................ 14
رزین های متداول تبادل یونی............................. 17
انتقال گرما به وسیله نانو سیالات........................ 18
جداسازی ایزوتوپ ها و فناوری نانو....................... 20
غربالی مولکولی......................................... 20
غربالی کوانتومی........................................ 21
اصل عدم قطعیت هایزنبرگ................................. 21
منابع ............................................................................................................................ 22
تاریخچه استخراج نفت در ایران :
صنعت نفت ایران نیز از سال 1908 پس از هفت سال تفحص مکتشفین و کشف نفت در
مسجدسلیمان واقع در دامنه جبال زاگرس ، پا به عرصه وجود گذاشت.
نفت خام :
امروزه چاههای نفت متعددی در سراسر جهان وجود دارد که از آنها نفت استخراج
میکنند و به نفتی که از چاه بیرون کشیده میشود، نفت خام میگویند. نفت
خام را تصفیه میکنند، یعنی هیدروکربنهای گوناگونی را که نفت خام از آنها
تشکیل شده است از یکدیگر جدا میکنند که به این کار پالایش نفت میگویند و
در پالایشگاهها این کار انجام میشود. نفت منبع انرژی و سرچشمه مواد اولیه
بسیاری از ترکیبات شیمیایی است و این دور از عوامل اصلی اقتصادی مدرن بشمار
میرود. در صنایع جدید از ثروت بیکران و تغییر و تبدیل مواد خام اولیه آن
بیاندازه استفاده میشود.
تشکیل نفت :
نحوه پیدایش نفت دقیقا تشخیص داده نشده و در این مورد فرضیات گوناگونی
پیشنهاد شده است. برخی از این تئوریها ، مربوط به مواد معدنی و بعضی دیگر
مربوط به ترکیبات آلی میباشد.
تشکیل نفت از مواد معدنی :
اساس این فرضیه بر این است که کربورهای فلزی تشکیل شده در اعماق زمین در
اثر تماس با آبهایی که در زمین نفوذ مینماید، ابتدا ایجاد هیدروکربورهای
استیلنی با رشته زنجیر کوتاه میکند. سپس هیدروکربورهای حاصل در اثر تراکم و
پلیمریزه شدن ایجاد ترکیبات پیچیده و کمپلکس را می نماید که اغلب آنها
اشباع شده است.
تشکیل نفت از مواد آلی :
بر اساس این فرضیه تشکیل نفت را در اثر تجزیه بدن حیوانات در مجاورت آب و
دور از هوا میدانند. زیرا در این شرایط ، قسمت اعظم مواد ازته و گوگردی
تخریب و مواد چرب باقیمانده در اثر آب ، هیدرولیز میگردد. اسیدهای چرب
حاصله ، تحت اثر فشار و درجه حرارت با از دست دادن عوامل اسیدی تولید
هیدروکربورهائی با یک اتم کربن کمتر مینماید.
"انگلر Engler" از تقطیر حیوانات دریائی توانسته
است مواد نفتی را تهیه نماید و با توجه به خاصیت "چرخش نوری" مواد نفتی که
علت آن وجود گلسترین است (ماده ای که در بدن حیوانات وجود دارد) این فرضیه
بیان و مورد تایید شده است. در صورتی که فرضیه های دیگر که مبتنی بر اساس
مواد معدنی در تشکیل نفت میباشد، هیچگونه توضیح و دلیل قانع کننده ای در
مورد این ویژگی نمیتواند بیان نماید.
همچنین نفت میتواند از تجزیه گیاهان تولید گردد. در این حالت ، خاصیت چرخش
نور را به علت وجود ترکیب مشابه گلسترین یعنی پلی استرولها
میدانند."مرازک Mrazec" ، میکروبها را در این
تغییر و تبدیل موثر میداند. تئوری تشکیل نفت بر مبنای مواد آلی ، فعلا
بیشتر مورد قبول میباشد و اختلاف قابل ملاحظهای را که بین ژیزمانها
(منابع نفتی) مشاهده میگردد، بعلت شرایط و عوامل مختلف تشیکل ژیزمانها
میدانند.
دانشمندان بر مبنای این توصیه بویل، تا اواخر قرن هجدهم حدود 30 عنصر گوناگون کشف کردند و مواد مرکب زیادی را که از این عناصر ساخته شده بود را بررسی کردند. بسیاری از مواد مرکب بررسی شده تا آن زمان از مولکولهای ساده ساخته شده بودند و هر کدام بیش از چند اتم نداشتند. کافی بود فهرستی از انواع گوناگون اتمها تهیه شده و گفته شود که در هر ماده مرکب از هر نوع اتم چند عدد وجود دارد. در سال 1824 میلادی (1203 شمسی) "یوستون لیبینگ" و "فردریخ وهلر"، شیمیدان آلمانی درباره دوماده مرکب متفاوت تحقیق میکردند. هریک از آنها برای ماده مرکب خود فرمولی بدست آورد و نشان داد که در آن چه عناصری و از هر عنصر چند اتم وجود دارد. وقتی آنها نتایج کار خود را اعلام کردند معلوم شد که هر دو ماده دارای فرمول یکسانی هستند. با اینکه این دو ماده با هم متفاوت بودند و از هر جهت خواص گوناگونی داشتند، مولکولهای آنها از عناصر یکسان تشکیل شده و حتی عده اتمهای هر عنصر در هر دو ماده یکسان بود. به این ترتیب مشخص شد که تنها جمع کردنِ عده اتمهای موجود در یک مولکول کافی نیست. و این اتمها باید آرایش ویژهای داشته باشند. بنابراین، آرایش متفاوت سبب تفاوتِ مولکولها میشود و خواص مواد با هم فرق خواهند داشت.
با توجه به اینکه هم مولکولها و هم اتمها به قدری کوچک هستند که دیده نمیشوند، شیمیدانان چگونه می توانند نوع آرایش اتمها را در مولکولها بیابند؟
نخستین گام را در این راه، "ادوارد فرانکلندِ" انگلیسی برداشت. او مولکولهای آلی را با برخی از فلزات ترکیب کرد و دریافت که اتمِ یک نوع فلزِ، همیشه با تعداد مشخصی از مولکولهای آلی ترکیب میشود. او نتیجه گرفت که هر اتم توانایی و ظرفیت خاصی برای ترکیب با عناصر دیگر دارد. او اسم این خصلت را "والانس" گذاشت. "والانس" کلمهای لاتین به معنای "ظرفیت" یا "توانایی" است. برای مثال وقتی میگوییم:"ظرفیت هیدروژن «یک» است"، یعنی اتم هیدروژن تنها با یک اتم دیگر میتواند ترکیب شود. ظرفیت اکسیژن «دو»، نیتروژن «سه» و کربن «چهار» است. اسکات کوپرِ اسکاتلندی، نیز در 1858 میلادی نظریه "پیوندهای شیمیایی" را مطرح کرد. او معتقد بود که اتمها با "قلاب" یا "پیوند" به یکدیگر
متصل میشوند و مولکولهای مختلف را تشکیل میدهند. طبق نظریه او، هر اتم به اندازه "ظرفیت" یا "والانس" خود میتواند با اتمهای دیگر پیوند بدهد. کوپر همچنین پیشنهاد کرد که اتمها را با توجه به ظرفیتشان و تعداد پیوندهایی که میتوانند با سایر اتمها داشته باشند، به صورت ذیل نمایش دهند:
به این ترتیب میتوانیم مولکولها را با رسم پیوندهای میان اتمها، به شکل زیر نشان بدهیم:
استفاده از روش فوق برای نشان دادن ساختمان مولکولهای کوچک و غیر آلی، به راحتی مقدور بود، اما در مورد مولکولهای بزرگتر و مواد مرکب آلی، مشکلاتی وجود داشت که گاه باعث گمراهی میشد. از اینرو "ککوله" تلاش کرد تا مشکل ظرفیت را در موردِ مواد مرکب آلی برطرف کند. "فردریش آگوست ککوله" با توجه به این مسأله که هر اتم کربن ظرفیت اتصال به چهار اتم دیگر را دارد، توانست مسایل مربوط به تعداد زیادی از مولکولها -که ساختمان آنها تا آن زمان معمّا به نظر میرسید- را حل کند.
امروزه نیز از همین مدل برای نشان دادن مولکولها و همچنین توضیح خواص آنها استفاده میشود.