دانلود مقاله و پروژه و پایان نامه دانشجوئی

دانلود مقاله و پروژه و پایان نامه دانشجوئی

دانلود مقاله و پروژه و پایان نامه دانشجوئی

دانلود مقاله و پروژه و پایان نامه دانشجوئی

پروژه آمار ((جامعه کل دانش‌آموزانی است که این کتاب آمار واحتمال را مطالعه می کنند.))

روشهای جمع‌آوری داده‌ها:

بسیاری از گروه‌هایی که روش درست تحقیق را نمی‌دانستند در این مهم باز ماندند و گروه آمار تحقیقات خود را آغاز کرد. این گروه ابتدا جامعه را معرفی نمود.

((جامعه کل دانش‌آموزانی است که این کتاب را مطالعه می کنند.))

با توجه به کثرت جامعه و هزینه سر سام آور وقت گیر بودن نمی توانستند سر شماری کنند بس تصمیم دیگری گرفتند. یکی از اعضا پیشنهاد کرد که از دانش آموزان تهران نمونه گیری کنند که مورد موافقت سر گروه واقع نشد سر رگروه دلایل خود را برای رد این در خواست چنین اعلام کرد :

  1. دانش آموزان تهرانی به دلیل اینکه دارای امکانات فراوانی هستند وضعیت تحصیلی آنان بسیار بهتر ازمناطق محروم  نقاط کشور است .
  2. دانش آموزان به صورت تصادفی انتخاب نشده اند و ممکن است نمودار آنها با نموداری که می خواهند بدست آورند فرق داشته باشد .

سر گروه اعلام کرد که کل شهرهای ایران را روی کاغذ بنویسند و از این شهرها 100شهررا بصورت قرعه کشی و کاملا تصادفی انتخاب نمایند سپس اسم مدارس این شهرها را نیز به روی کاغذ آورند و100 دبیرستان را به  صورت تصادفی انتخاب نمایندو سپس اسم هر یک از دانش آموزان آن مدارس را بنویسند و از آن صد دانش آموز انتخاب نمایند و نمرات آنها را مورد برسی قرار دهند و با ابنکه اسم کلیه دانش آموزانی که به آنها کتاب آمار به آنها تدریس شده است روی کاغذ نوشته شود و100دانش آموزانتخاب شوند اکثریت اعضا به روش دوم رای دادند .

اسم کلیدی دانش آموزان را روی کاغذ نوشته و 100دانش آموز را انتخاب نمودند نمرات این دانش آموزان به شرح زیر است .

 

19

15

18

17.75

16.5

14.5

15.25

20

16

19.75

18.75

19

20

14

20

19

10.25

11.75

13

20

18

20

15

16

18

18

19

20

20

20

18

19

19

19.75

20

17

19

14.5

14

12

20

20

20

18.5

20

19

10

12.75

10.25

18

18

19.5

20

20

17.75

17.75

17.5

14

15.5

14

پروژه آمار مجموعه تمام عناصری را که دارای یک یا چند ویژگی مشترک بوده

جمعیت:

مجموعه تمام عناصری را که دارای یک یا چند ویژگی مشترک بوده و در یک زمان مشخص و یا موقعیت مناسب مورد مطالعه قرار می‌گیرد جمعیت گویند. مثلاً جمعیت دانشجویان رشته‌های ‌فنی و مهندسی که در دو سال گذشته فارغ التحصیل شده اند از نظر دانش علمی مثال دیگر اینکه جمعیت ماشینهای سمند که در دو سال گذشته به بازار آمده اند از نظر قدرت ترمز. جمعیت به دو نوع تقسیم می‌شود: جمعیت متناهی و نامتناهی تعداد عناصر جمعیت را اندازه ی جمعیت گویند و آن را با حرف N نشان می‌دهند.

نمونه:

بخشی از جمعیت را نمونه گویند و یا به میان دیگر نمونه زیر مجموعه ای از جمعیت است.

تعداد عناصر نمونه را اندازه (حجم) نمونه گویند و با حرف N نشان می‌دهند.

در بررسی‌های ‌آماری سعی می‌کنند در انتخاب نمونه دقت کافی انجام گیرد. تا با بررسی چنین نمونه مناسبی نتایج فاصله از آن را بتوان با دقت زیاد برای جمعیت تعمیم داد در هر صورت بایستی نمونه انتخاب شده یک الگوی مناسب از جمعیت باشد برای مثال اگر بخواهیم در مورد میزان درآمد افراد ساکن شهر گرگان مطالعه ای را انجام دهیم بایستی نمونه‌ی ما به گونه ای انتخاب شود که شامل افراد با درآمد کم، متوسط و زیاد به نسبت موجود در جمعیت باشد.

مقیاس سازی:

عددی کردن متغیرها را مقیاس سازی گویند در حقیقت می‌خواهیم عدد حقیقی x را تحت قاعده خاص f به متغیر t نسبت دهیم یعنی x=f(x) برای آشکار شدن موضوع فرض کنید متغیر مورد نظر وزن باشد آنگاه عدد x را توسط تابع f به ویژگی وزن اختصاص می‌دهیم بر حسب اینکه قاعده ی f چگونه باشد چهار مقیاس گوناگون بدست می‌آید.

الف) مقیاس اسمی: هر گاه مقیاس x که معمولاً یک عدد طبیعی است، تنها برای شناسایی افراد یا چیزها یا مکان ها به کار رود، آن را یک مقیاس اسمی می‌نامند مثلاً کارگران یک کارخانه از شهرهای تهران، اصفهان، شیراز و گرگان باشد به ترتیب آن ها را با اعداد 1و2و3و4 مشخص کنیم این اعداد صرفاً می‌گویند که هر کدام از کدام شهر است مانند کارگری که برچسب 4 دارد از گرگان است.

ب) مقیاس ترتیبی: از x =f(t) یک مقیاس ترتیبی بدست می‌آید اگر شدت و ضعف متغیر t در x منعکس شود به این معنی که اعداد خاصیت بزرگتر یا کوچکتر را به مفهوم بهتر یا بهتر دارا می‌باشند ولی فاقد

کلیات معادلات دیفرانسیل با مشتقات جزئی

مرتبة یک معادلة دیفرانسیل با مشتقات جزئی بالاترین مرتبة مشتقات موجود در آن معادله است. مثلاً uuxy+uyux=f(x,y) یک معادله دیفرانسیل مرتبه دوم است. در اینجا   و  و

یک معادلعه دیفرانسیل با مشتقات جزئی را خطی[1] گوئین هرگاه این معادله نسبت به تابع مجهول و مشتقات آن، با ضرایبی که فقط تابع متغیرهای مستقل هستند، خطی باشد. یک معادله با مشتقات جرئی از مرتبه m را شبه خطی[2] گوئیم هرگاه این معادله نسبت به مشتقات جزئی مرتبه mام تابع مجهول، با ضرایبی که فقط تابع متغیرهای مستقل u و مشتقات از مرتبه کمتر از m هستند، خطی باشد (مانند مثال بالا) یک معادله دیفرانسیل با مشتقات جزئی خطی یک حالت خاص معادله شبه خطی است.

2- معادلات دیفرانسیل با مشتقات جزئی مرتبه اول

معادله دیفرانسیل با مشتقات جزئی مرتبه اول خطی با ضرایب ثابت

به عنوان گام نخست معادلع دیفرانسیل  (2-1) aux+buy+cu=f(xy) را درنظر میگیریم، که در آن تابع f داده شده و ضرایب ثابتاند. سعی میکنیم با تغییر متغیرهای ساده مانند (2-2) x=ay+a1 و y=by+b1 معادله دیفرانسیل با مشتقات جزئی (2-1) را به معادله دیفرانسیل )uy+cu=f(ay+a1 , by +b1 تبدیل کنیم که مانند یک معادله دیفرانسیل معمولی خطی مرتبه اول با ضرایب ثابت نسبت به متغیر مستقل y حل میشود، منتها ثابت انتگرالگیری تابع دلخواهی از  خواهد بود. بعد از حل بجای y و  برحسب x و y جانشین میکنیم تا جواب u(x,y) حاصل شود البته لازمه این کار آنست که دترمیبنال ضرایب تغییر متغیرهای (2-C) غیرصفر باشد، سعنی مستقل بودن این متغیرها تضمین شود (این دترمینال ژاکوبی تغییر متغیرها است)

 


[1]- Linear

[2] - Quasi-Linear

بزرگترین عدد اول

 عدد اول : هر عدد طبیعی بزرگ تر از یک که فقط بر خودش ویک بخش پذیر باشد،عدد اول نامیده می شود. مثل ۲ ، ۳ ، ۵ ، ۷ ، ...

عدد مرکب : هرعدد طبیعی بزرگ تراز یک که به جز خودش و یک بر عدد طبیعی دیگری نیزبخش پذیر باشد، عددی مرکب نامیده می شود . مثل ۴ ، ۶ ، ۸ ، ۹ ، ...

عدد مرسن :اعداد اولی به شکل ۱- Mn = ۲n که در آن n اول باشد، اعداد اول مرسن نامیده می شوند. مثل اعداد  ۳ و۷ که اولین و دومین اعداد اول مرسن هستند.

( ۱- ۲۲ = ۳   و   ۱ - ۲۳ = ۷ )

 نخستین اعداد اول مرسن عبارت اند از : ۳ ، ۷ ، ۳۱ ، ۱۲۷ ، ۸۱۹۱ ، ۱۳۱۰۷۱ ، ۲۱۴۷۴۸۳۶۴۷ ، ... که به ترتیب  با n های اول ۲ ، ۳ ، ۵ ، ۷، ۱۳ ، ۱۷ ، ۱۹ ، ... متناظر هستند.

آقای مونک مارین مرسن فرانسویMonk Marin Mersenne۱۶۴۸-۱۵۸۸) که این اعداد را کشف کرد حدوداً ۳۵۰ سال قبل می زیسته است و اکنون ابر رایانه ها به کمک فرمول او سرگرم جستجوی اعداد اول بزرگ هستند.

بی شمار عدد اول وجود دارد اما علی رغم کوشش های فراوان هنوز هیچ رابطه یا نظمی که بتواند نحوه ی پراکندگی این عددها را در بین سایر اعداد نشان دهد، پیدا نشده است. به نظر می رسد که اعداد اول بدون هیچ نظم و الگویی و از روی تصادف در میان اعداد پراکنده شده اند. پیدا کردن بزرگ ترین عدد اول نه تنها برای ریاضیدان ها بلکه برای مهندسان و طراحان نرم افزارهای رایانه ای نیز بسیار مهم است. چرا که یکی از کاربردهای اصلی اعداد اول در مسائل امنیت و ایمنی ارتباطات رایانه ای و به ویژه شبکه های مبادلاتی الکترونیک است. فرض کنید شما یک عدد اول بسیار بزرگ داشته باشید و از آن به عنوان یک کد یا یک امضای الکترونیک استفاده کنید و از عدد غول پیکر اول دیگری نیز به عنوان پاسخ امضاء یا تاییدیه استفاده نمایید. به این دلیل که اعداد اول هیچ توزیع منظمی ندارند بنابراین رمزهایی که بر اساس آن ها ساخته شده باشد به راحتی قابل شکستن نخواهد بود. این انگیزه ی مهمی برای جستجوی اعداد اول بزرگ تر است.بزرگ ترین عدد اول که چهل و سومین عدد مرسن است کشف شد. شبکه رایانه ایGIMPS ( Great Internet Prime Search)عدداول   ۱- ۲۳۰۴۰۲۴۵۷ راکه  ۹۱۵۲۰۵۲ رقم دارد کشف کرد.

 

تعریف اعداد اول

عدد طبیعی P>1 را عدد اول می گویند هرگاه تنها مقسوم علیه های مثبت آن 1 و P باشند. به عبارت دیگر یک عدد طبیعی اول است هرگاه جز یک و خودش بر هیچ عدد دیگری بخش پذیر نباشد.
هر عدد طبیعی مخالف یک که اول نباشد مرکب یا تجزیه پذیر می گوییم.


به عنوان مثال

برنامه‌ریزی خطی

کمترین ضریب همبستگی بر روی عملکرد مربوط به طول برگ پرچم با 434/0 به خود اختصاص داده بود. بیشترین اثر مستقیم را بر روی عملکرد، تعداد دانه در پانیکول با 724/0 داشت. کمترین اثر مستقیم را بر روی عملکرد، عرض برگ پرچم با 164/0- داشت.

بیشترین اثر غیرمستقیم طول برگ پرچم از طریق تعداد دانه در پانیکول است و بین تعداد دانه در پانیکول با طول برگ پرچم ارتباط مثبتی وجود دارد، یعنی با افزایش تعداد در پانیکول، طول برگ پرچم بیشتر و باعث شده که عملکرد افزایش یابد. بیشترین اثر غیرمستقیم عرض برگ پرچم از طریق تعداد دانه در پانیکول بدست آمده است. لذا با افزایش تعداد دانه در پانیکول، عرض برگ پرچم بیشتر و در نهایت سبب افزایش عملکرد شد.

این مورد با نتایج ضرایب همبستگی مطابقت دارد، چرا که ضریب همبستگی صفات عرض برگ پرچم و تعداد دانه در پانیکول 502/0 است. بیشترین اثر غیرمستقیم طول پانیکول از طریق تعداد دانه در پانیکول بوده. بنابراین با افزایش تعداد دانه در پانیکول، طول پانیکول بیشتر و عملکرد بیشتر گردید.

این مورد نیز با نتایج ضرایب همبستگی مطابقت دارد، زیرا ضریب همبستگی صفات طول پانیکول و تعداد دانه در پانیکول 611/0 است. بیشترین اثر غیرمستقیم پانیکول تا رسیدن از طریق تعداد دانه در پانیکول بوده است، اما با افزایش تعداد دانه در پانیکول، پانیکول تا رسیدگی کمتر و نیز سبب کاهش عملکرد شد. این مورد نیز همچون گذشته با نتایج ضرایب همبستگی مطابقت دارد، چرا که ضریب همبستگی پانیکول تا رسیدگی و تعداد دانه در پانیکول 4/0- است. بیشترین اثر غیرمستقیم

بررسی افت تحصیلی ریاضی ابتدایی

راهبردهای حل مسئله را می توان صراحتا" آموزش داد .

زمان :

دانش آموزان باید برای (( هضم کردن )) و تفکر کافی در مورد مسئله ، یعنی زمان برای درک موضوع ، زمان برای کشف مسیر حل و زمان برای فکر کردن به جواب کاملا" وقت داشته باشند . بعلاوه معلمان باید دانش آموزان را تشویق کنند که در صورت تمایل بیش از
رها کردن مسئله ، زمان بیشتری را برای کارکردن روی آن صرف کنند .

طرح درس :

فعالیتهای آموزش در زمان باید از طریق برنامه ریزی هماهنگ شوند تا دانش آموزان فرصت پرداختن به مسایل متعدد را داشته باشند .

 

راهبردهای حل مسائل :

1- مسئله را درک کنید .

2- نقشه ای برای حل آن طرح کنید .

3- نقشه را اجرا کنید .

4- برای امتحان کردن جواب به دست آمده به عقب برگردید .

این مدل مبنایی برای حل مسئله تشکیل می دهد که در بیشتر کتابهای ریاضی مدارس ابتدایی مورد استفاده قرار می گیرد . بنابراین دانش آموزان ، دیدن ، طرح نقشه ، عمل ، وارسی را می آموزند .

 برای حل مسایل باید به این شعار توجه داشت : همان طور که مسئله را
 می خوانید سعی کنید آن را حل کنید .

1- اقدام کردن                2- یک طرح یا دیاگرام بکشید .           

3- به دنبال الگو بگردید .         4-  جدول رسم کنید . 

5- همه امکانها را به طور اصولی برشمارید .          6- حدس بزنید و امتحان کنید .

7- خواسته ها ، مفروضات و اطلاعات مورد نیاز را مشخص کنید .

8- یک جمله باز بنویسید .   

9- مسئله ای حل کنید که از مسئله اصلی ساده تر یا با آن هم ارز باشد .

10- دیدگاه خود را نسبت به مسئله تغییر دهید .

 

استفاده از مواد آموزشی دست ساز :

تحقیقات نشان داده است که در دروسی که در آنها از مواد آموزشی دست ساز استفاده
 می شود نسبت به دروسی که فاقد این مواد آموزشی هستند از احتمال بیشتری برای ارائه فعالیتهای ریاضی برخوردارند . وقتی که بچه ها مواد آموزشی دست ساز را به کار می برند ، ریاضیات را بهتر درک می کنند .

ارزشیابی :

ارزشیابی باید بخش مکملی در آموزش ریاضیات باشد . باید مشخص شود که آیا آنچه که ما فکر می کنیم هر کودک باید یاد بگیرد . امتحانات معیاریابی یا مهارت به شما کمک می کند که کودک را بر حسب توانایی فردی او مورد ارزشیابی قرار دهید .

نظر سنجی از والدین ، که در فرمهای پرشده یا جلسات اولیا و مربیان عنوان می شود ، راهنماییهای مفیدی در زمینه آنچه که کودکان آموخته اند ، در اختیار می گذارند .

تشخیص :

برای پرداختن به نیازهای کودکان جهت یادگیری ریاضیات ، نخست باید نقاط قوت و ضعف آنها را مشخص کرده از جمله خط مشیهای تشخیص در ریاضیات ، می توان به موارد زیر اشاره کرد :

1- مطمئن شوید که ضعف ریاضی یک کودک ضعفی واقعی است .

2- به خاطر داشته باشید که هر کودک پیش از آن که از نظر اداراکی به رشد نهایی برسد . از مراحل متعدد رشد عبور می کند .

3- قوه تشخیص خود را با استفاده بدون تعصب از مواد آموزشی دست ساز تقویت کنید .

4- در تشخیص خود ، جنبه هایی را که برای دانش آموزان مهیج هستند ، فراموش نکنید .

5- برای جفت و جور کردن تصاویر ذهنی درست کودک انعطاف پذیر و شکیباباشید .

6- نگرش مثبتی داشته باشید .

7- بین خطاهایی که به طور اتفاقی رخ می دهد و خطاهایی که دایما" تکرار می شود ، فرق بگذارید .

 

درمان (( جبران عقب ماندگی )) :

درمان مناسب با تشخیص مناسب شروع می شود . اگر تصویر روشنی از نیازهای کودک داشته باشید می توانید چنان برنامه ای تنظیم کنید که به کمک آن پیش نیازهای ضروری کودک برطرف گردد . شما باید شاگردان خود را چنان گروه بندی کنید که کسانی که تنها به یک اشاره خاص نیاز دارند و کسانی که باید به طور فردی با آنها کار شود مشخص گردند . تحقیقات نشان داده است که برخی از روشهای مؤثر درمان به شرح زیر می باشد :

1- کودک را در برنامه درمان خود دخالت دهید .

2- طرح آموزش جبرانی باید با آموزشهای قبلی متفاوت باشد .

3- زمینه تجاری را فراهم آورید که به استفاده از چند حس از حواس پنجگانه
دانش آموزان نیاز داشته باشد .

4- به کمک ابزارهای واقعی ، کودک را به سوی

بازی و ریاضی

گاردنر با نشان نبوغ و خلاقیتش در به کار گیری ریاضی در بازی و سرگرمی، دیگر دانشمندان و ریاضیدانان را به تهیج واداشت. در این مسیر یعنی به کار گیری ریاضی در جهان امروز داگلاس هافستادر نیز همانند گاردنر سهم بسزایی داشت. در مجموع محبوب ترین و معروف ترین ریاضیدانان که در سال های اخیر کمک شایانی به این امر داشته اند عبارتند از:

  1. جان کاندی
  2. مارتین گاردنر
  3. داگلاس هافستادلر


همچنین کسانی که با تلاش های بی شائبه خود تحقیقات وسیعی را در نشر و گسترش علم ریاضی در بین عموم جامعه انجام داده اند عبارتند از:

  1. هنری دُدنی
  2. پیت هین
  3. سم لوید

مقدمه

تاریخچه ریاضی

انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجه‌هایش را می‌داند انجام می‌داد. اما بزودی مجبور شد وسیلة شمارش دقیقتری بوجود آورد. لذا، به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده می‌باشد قدیمی‌ترین دستگاه شماری است که آثاری از آن در کهن‌ترین مدارک موجود یعنی نوشته‌های سومری مشاهده می‌شود.سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بین‌النهرین، یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی، عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند. در این موقع مصریها

هدف و اهمیت رشته ریاضی

هدف



ریاضیات علم نظم است و موضوع آن یافتن، توصیف و درک نظمی است که در وضعیت‌های ظاهرا پیچیده‌ نهفته است و ابزارهای اصولی این علم ، مفاهیمی هستند که ما را قادر می‌سازند تا این نظم را توصیف کنیم» .

دکتر دیبایی استاد ریاضی دانشگاه تربیت معلم تهران نیز در معرفی این علم می‌گوید:

«
علم ریاضی، قانونمند کردن تجربیات طبیعی است که در گیاهان و بقیه مخلوقات مشاهده می‌کنیم . علوم ریاضیات این تجربیات را دسته‌بندی و قانونمند کرده و همچنین توسعه می‌دهند

دکتر ریاضی استاد ریاضی و رئیس دانشگاه صنعتی امیرکبیر نیز در معرفی این علم می‌گوید: «ریاضیات علم مدل‌دهی به سایر علوم است. یعنی زبان مشترک نظریات علمی سایر علوم ، علم ریاضی می‌باشد و امروزه اگر علمی را نتوان به زبان ریاضی بیان کرد، علم نمی‌باشد

گرایش‌های مختلف این رشته و اهداف آنها عبارتند از:


 

ریاضی کاربردی:

هدف از این شاخه تربیت کارشناسی است که با اندوخته کافی از دانش ریاضی، توانایی تحلیل کمی از مسائل صنعتی، اقتصادی و برنامه‌ریزی را کسب نموده، توان ادامه تحصیل در سطوح بالاتر را داشته باشد.


 

ریاضی محض:

هدف از این شاخه ریاضی، تربیت متخصصان جامع در علوم ریاضی است که آمادگی لازم برای ادامه تحصیل در جهت اشتغال به پژوهش و نیز انتقال علم ریاضی در سطوح دانشگاهی را داشته باشند. آشنایی با تجزیه و تحلیل مسائل در قالب ریاضی و مدل‌سازی ریاضی نیز از اهداف دیگر شاخه ریاضی محض است.

 

انسان اولیه چگونه می شمرد؟

می دانیم که در زندگی روزمره» عدد« کلمه یا نشانه ای است که بر مقدار و تعداد معینی دلالت می کند.اما لازم نیست آنچه را که ما درباره اش گفتگو می کنیم، مشخص کند. مثلاَ» سه« یا» 3« می تواند یه معنی سه هواپیما، سه قلم یا سه کتاب باشد.

در ابتدا، انسان اولیه می توانست تا دو بشمارد.امروزه هنوز در جهان، قبایلی ابتدایی مانند بومیان بدوی استرالیا» ابورجین« ها وجود دارند که فقط سه عدد می شناسند:یک،دو و بسیار. اگر یک نفراز این قبیله سه عدد بومرانگ(*) یا بیشتر داشته باشد، برای شمارش آن فقط عد بسیار را به کار می برد. البته بیشتر انسانهای اولیه تا ده، یعنی مجموع تعداد انگشتان دستان می شمردند. بعضی فقط تا 20 یعنی مجموع تعداد انگشتان دست و پایشان می شمردند.

هنگامی که با انگشتان دست شماره می کردند، تفاوتی نمی کند که از انگشت کوچک دست یا از انگشت شست شروع کنید. اما بین برخی از اقوام برای این کار قاعده هایی وجود داشت. مثلاَ» زونی« ها (قبیله ای از سرخپوستان آمریکای شمالی) شمردن را از انگشت کوچک دست چپ شروع می کردند.یا سرخپوستان اتوماک آمریکای جنوبی شمردن را با انگشت شست آغاز می کردند.

آدمی چون متمدن تر شد، از ترکه چوب، ریگ و گوش ماهی برای نمایش اعداد استفاده می کرد.آنها سه ترکه یا ریگ را در کنار هم ردیف می کردند که معنی»سه«را برساند. عده ای باایجاد شیار هایی بر روی چوب یا گره هایی که به یک طناب می زدند منظورشان را

 


(*) بومرانگ-نوعی ابزار شکار که به کمانی خمیده است و با دست پرتاب می شود و پس از طیی مسافت (بر حسب قدرت بازوی پرتاب کننده)به سمت پرتاب کننده باز می گردد.

اندیس PI در گرافها

مقدمات

در قرن هیجدهم میلادی شهر کوینسگبرگ از دو ساحل یک رودخانه و دو جزیره تشکیل شده و در آن زمان 7 پل این چهار منطقه را به هم وصل می‌کردند معمای زیر سالها شهروندان را سرگرم کرده بود. آیا امکان دارد با آغاز از یکی از این مناطق در شهر کشتی زد از هر پل یک بار تنها یکبار گذشت و به مکان اول بازگشت؟

اویلر در سال 1736 با حل مسأله پلهای کوینگسبرگ نظریه گراف را بنیان گذاشت وی به هر یک از چهار منطقه نقطه‌ای از صفحه را تخصیص داد و به ازای هر پل بین دو منطقه پاره خط یا کمانی بین دو نقطه متناظر با آنها رسم کرد بدین ترتیب مطابق شکل زیر به مدلی ریاضی دست یافت و به سادگی پاسخ معما را که منفی است دریافت در دنیای اطراف ما وضعیت‌های فراوانی وجود دارد که می‌توان توسط نموداری متشکل از یک مجموعة نقاط به علاوة خطوطی که برخی از این نقاط را به یکدیگر متصل می‌کنند به توصیف آنها پرداخت. تجدید ریاضی این وضعیت‌ها به مفهوم گراف منتهی می‌شود.

* تعریف 1 : گراف G یک سه تایی مرتب  است که تشکیل شده از یک مجموعة ناتهی V(G) از رأس‌ها، یک مجموعة E(G) از یالها و یک تابع وقوع VG که به هریال G یک زوج نامرتب از رأس‌های G را که الزاماً متمایز نیستند.

نسبت می‌دهد اگر e یک یال و v, u دو رأس باشند بطوریکه  در اینصورت گفته می‌شود که e ، رأس‌های v, u را به یکدیگر وصل کرده است و رأس‌های v,u دو سریال e نامیده می‌شوند.

برای رسم یک گراف روش یکتایی وجود ندارد، بدین دلیل که موقعیت نسبی نقاط و خطوط که به ترتیب نمایانگر رأس‌ها و ریال‌های گراف هستند برای ما اهمیتی ندارد. نمودار یک گراف فقط رابطة وقوعی را که بین رأس‌ها و یالها برقرار است نشان می‌دهد.

تعریف 2 : دو رأس که برروی یال مشترکی واقعند مجاور نیست اگر هیچ یالی از هیچ رأسی به آن وجود نداشته باشد.

تعریف 3 : دو یال واقع بر روی یک رأس مشترک نیز مجاورند و یک یال با دو سر یکسان طوقه و یک یال با دو سر متمایز یال پیوندی است.

تعریف 4 : اگر مجموعة رأس‌ها و مجموعة یالهای یک گراف متناهی باشند گراف مزبور را متناهی می‌نامند.

تعریف 5 : گرافی را که یک رأس داشته باشد بدیهی و سایر گراف‌ها را غیربدیهی می‌نامیم.

تعریف 6 : یک گراف ساده است اگر هیچ طوقه‌ای نداشته باشد و بین هر دو رأس آن بیش از یک یال نباشد.

تعریف 7 : گراف تهی، گرافی است که هیچ یالی نداشته باشد.