دانلود مقاله و پروژه و پایان نامه دانشجوئی

دانلود مقاله و پروژه و پایان نامه دانشجوئی

دانلود مقاله و پروژه و پایان نامه دانشجوئی

دانلود مقاله و پروژه و پایان نامه دانشجوئی

مطالعه ریزساختار آلیاژهای نانوکریستال Al-Ti ترکیب شده بوسیله ball mill در اتمسفر هیدروژن و اکستروژن گرم آن

فهرست مطالب

مقدمه ۴
۱- جزئیات آزمایشات ۵
۲-۱ اکستروژن گرم ۷
۳-۲ تستهای مکانیکی ۷
۲- نتایج ۸
۳- نیتجه گیری (conclusio) 17
منابع و مراجع ۱۹

 

 

منابع و مراجع :

۱٫ P.  R. Roberts, B. L. Ferguson, “Extrusion of  Metal Powders” , International Materials Reviews, vol 36(No.2), 1991, p.62-79.

2. Metals Handbook, “Powder Metallurgy” , vol.7,515-518,1984

3. A. B. Pandey, R. S. Mishra, “Steady State Creep Behavior of an Al-Al2o3 Alloy” , Acta Mater, vol. 45,No.3pp. 1297-1306, 1997.

4. K. N. Ramakrishnan, H. B. Mcshane, T. Sheppard, “Mechanical Properties of Extruded Rapidly Solidified Al-Fe-Cu” , INT. J.Powder Metal, 31, (4), 325-326, 328-333, 1995.

5. Kyoung I1 Moon, Kyung Sub Lee, “Compressive deformation behavior of nanocrystalline Al-5 at %Ti alloys prepared by reactive ball milling in H2 and ultra high-pressure hot pressing” , Journal of Alloys and Compounds 333, 249-259,2002.

6. M. Goncalves, “Production and Characterization of Al-Si- X alloy obtained by power extrusion” , Metal. Mater. ABM51, (441), 432-434, 1995.

7. N. Kanetake, M. Ozaki, choh, “Degradation in Mechanical Properties by Forging of Particle reinforced Aluminum Matrix composites” , Materials Science and Technology, 11, (4), 357-362, 1995.

8. Lijun Zu, Shoujing Luo, ” Study on the Powder Mixing and Semi-Solid  Extrusion Forming Process of Sic/2024 Al Composites” , Journal of Materials Processing Technology , 114, 189, 2001.

9. Ford, Clarence Edward, “Impored Extrusion Method and Apparatus for Producing a bod from Powder Material”, European Patent Application, No 0545056 Al, 1993.

10. C. Adiga, K. Sadnanda, “Extrusion of Hard-Metal Powders”, PMAI Newsletter, 13, (1), 19-24, 1986.

11. HN. Yoshimura, et all, “Production and Characterization of Al/Sic Metallic Matrix Composite Materials Obtained by Power Extrusion” Metal. ABM, 48, (407), 406, 408, 412-417, 1992.

12.M. Hayakawa, et al, “Wear Characteristics of Ceramic Particles disperded Aluminum Composites” , ۷۶th Conference of the Japan Institute of Light Metals” Osaka, Japan, 10-12, May 1989.

13. D. Rialo, J. Zhou, J. Duszezyk, “The Tribological Characteristics of The Al-20Si-3Cu-1Mg alloy Reinforced with Al2o3 Particles in Relation to the Hardness of a Mating Steel”, Journal of Materials Science, 35, 5497-5501, 2000.

14. Hsu- Shen Chu, et al, “Study of 6061- Al2o3 Composites Produced by Reciprocating Extrusion”, Metallurgical and Materials Transactions A, vol. 31A, 2587-2596, Oct.2000.

15. K. Akeehi, “Power Extrusion of Rapidly Solidified Alloy Power and the Applications”, J. JPN. Soc. Powder Metal, 41, (8), 907-911, 1997.

16. M. Otsuki, et al, “Mechanical Properties of Powder Forged, Rapidly Solidified Alumimum Alloy Parts”, MET. Powder REP, 46, (4), 30-32, 1991.

17. S. Komasu, et al, “Change Of Specific Resistance of Aluminum-Based Power Extrusion Alloys on Aging”, ۷۶th Conference of the Japan Institute of Light Metals, Osaka, Japan, 10-12, 1989.

18. Kwang-Min Lee, P.H. Shingu, “Solid State Reaction Between Powders and Foils by Low-Energy ball Milling”, Journal of Alloys and Compounds, 241,153-159, 1996.

19. “Elevated Temperature Aluminum-Titanium Alloys by Powder Metallurgy”, by Us Patent No. 4. 834,942,2000,

20. J. Crofton, et al, “Finding the Opimum Al-Ti Alloy Composition for use as an Ohmic Contact to p-type Sic”, Solid-State Electronics, 46, 109-113, 2002.

21. I. C. Barlow, et al, “Evolution of Microstructure and hardening, and the role of Al-Ti Coarsening, During Extended Thermal Treatment in Mechanically Alloyed Al-Ti-O Based Materials”. Acta Mater, 49, 1209-1224, 2001.

22. M. Palm, al, “Phases and Phase Equilibria in the Al-Rich Part of the Al-Ti System Above 900°c, Intermetallics, 10, 523-540, 2002.

23. K. Uenishi, et al, “Wear and Oxidation Resistance of Al2o3 Particle Dispersed Al-Ti Composite with a Nanostructure Prepared by Pulsed Electric Current Sintering of Mechanically Alloyed Powders”, Intermetallics, 105-111, 2002.

24. Cooke CM, Kim. YW, “Microstructural Characterization of a gama Titanium Aluminide Powder Extrusion,” Computer-Aided Microscopy and July 1989.

25. D.L. Zhang, D. Y. Ying, “ Formation of Fcc Titanium during Heating High Energy ball Milled Al-Ti Powders”, Materials Letters, 52, 329-333, 2002.

26- Kyoung Il Moon,kyung Sub Lee,”A study of the microstructure of nanocrystalline Al-Ti alloys synthesized” Journal of Alloys and Compounds,291, (1991), 312-321.

27- H.G.F. Wilsdorf, in: Y.W. Kim, W. Griffith (Eds.), Dispersion Strengthened Aluminum Alloys, TMS, Warrendate, PA, 1988, p 3.

28- E.A. Starke, J.A. Wert, in: J. Hildenman, M.J. Koczak (Eds.), High Strength Powder Metallurgy Aluminum Alloys 11, RMS-AIME, 1986, p 3.

29- S.H. Wang, P.W. Kao, C.P. Chang, Scr. Metall. Mater. 29 (1993) 323.

30- H. Gleiter, Nanostruct. Mater. 1 (1992) 1.

31- R.W. Siegel, Nanostruct. Mater. 1 (1993) 1.

32- H.J. Fecht, Nanostruct. Mater. 1 (1992) 125.

33- J.R. Groza, R.J. Doeding, Nanostruct. Mater. 7 (1996) 749.

34- K.1. Moon, K.S. Lee, J. Alloys Comp. 264 (1998) 258.

35- K.1. Moon, K.S. Lee, J. Kor. Inst. Met. Mater. 36 (1998) 909.

36- K.K. Nihara, A. Nakahira, T. Sekino, Nanophase and Nanocompo-Site Materials, Materials Research Society Symposium Proceeding, Vol. 286, MRS, 1993, p. 405.

37- Y.S. Lim, K.S. Lee, J. Kor. Inst. Met. Mater. 29 (1991) 749.

38- K.M. Lee, High Temperature Properties of Dispersion stengthened  Al-Ti alloys by Mechanical Alloying, PhD thesis, Hanyang Uni-versity, Korea.

39- H. Ouyang, B. Fultz, H. Kuwano, in: R.D. Shull, J.M. Shanchez (Eds.), Nanophases and Nanocystalline Structures, TMS, 1992, p. 95.

40- A. Lasalmonie, J.L. Strudel, J. Mater. Sci. 21 (1986) 1837.

41- T. Haubold, R. Bohn, R. Birringer, H. Gleiter, Mater. Sci. Eng. Al53 (1992) 676.

42- N. Wang. Z. Wang, K.T. Aust, U. Erb, Acta Metall. Mater. 43 (1995) 519.

43- M.E. Fine, in: Y.W. Kim, W. Griffith (Eds.), Dispersion Strengthened Aluminum Alloys, TMS, Warrendale,  PA, 1988, p 3.

44- R.C. Benn, P.K. Mirchandani, A.S. Watwe (Eds), Modem Developments in P/M, Vol. Vol 21, MPIF, Princeton, NJ, 1988, p. 479.

45- V.Y. Gertsm, R. Birringer, Scr. Metall. Mater. 30 (1994) 577.

46- V. Amhold, K. Humaort, in: Y.W. Kim, W. Giffith (Eds.), Dispersion Strengthened Aluminum Alloys, TMS, Warendale, PA, 1988, p3.

مقدمه :

آلیاژهای آلومینیوم جزء مواد پرکاربرد درصنایع هوافضا و اتومبیل می باشند . زیرا این آلیاژها دارای خواص خوبی مانند مقاومت به خوردگی ، شکل پذیری و خواص مکانیکی خوب هستند ولی آلیاژهای آلومینیوم تجاری در دمای بالاتراز ۲۰۰-۳۰۰ºC بطورمحسوسی استحکامشان را از دست می دهند و درکاربردهای ساختمانی ناپایدار و غیرقابل استفاده می شوند که این دما به ترکیب و ساختار آلیاژ بستگی دارد . تحقیقات گسترده در مورد کاربردهای آلیاژهای آلومینیوم بواسطه استحکام دهی بالای آنها در دمای ۶۰۰ºC توسعه پیدا کرده است .[۲۷]

آلیاژسازی مکانیکی (Mechanical Allay)  MA آلیاژهای Al-Ti انتخاب خوبی برای اکثر کاربردها هستند زیرا بعلت وجود ذرات ریز Al-Ti و اکسیدها و بیدها مقاومت خوبی را در دماهای بالاتر از ۶۰۰ºC   نشان می دهد . استحکام در دمای بالا همراه با چگالی کم ، آلیاژهای Al-Ti را قابل رقابت با موادی مانند تیتانیم و آلیاژهای پایه نیکل می کند . ولی انعطاف پذیری کم در دمای اتاق باعث شده استفاده عمومی از آنها محدود شود [۲۸,۲۹]  ساختار نانوکریستال می تواند تنها دلیل افزایش همزمان سختی و انعطاف پذیری (ductility)  باشد .

برای افزایش انعطاف پذیری (duetility)  به خوبی استحکام در دمای اتاق برای آلیاژ Al-Ti ما می توانیم ار روش آلیاژسازی مکانیکی برای تهیه ساختار نانوکریستال استفاده کنیم زیرا در این روش اندازه ذرات پودر درحد نانومتر کاهش می یابد .

مواد نانوکریستال بعنوان یکی از پربهره ترین مواد در دهه اخیر مطرح شده اند به سبب اینکه آنها خواص مفید و بالقوه ای برای کاربردهای مختلف دارند که وابسته به اندازه بی نهایت ریزدانه ها است [۳۰,۳۲] و مواد بصورت پودر زمانی می توانند یک ماده با ساختار نانوکریستال با سودهی مناسب را تولید کنند . که سایز ذرات آنها در حد نانومتر باشد [۳۳] .

در آزمایشات گذشته [۳۴] پودر نانوکریستال آلیاژ Al-Ti بطور موفقیت آمیزی بوسیله آسیاب گلوله ای واکنش دار(RBM)  (Reactive ball Milling) در اتمسفر هیدروژن ترکیب شده بود و یک نوع ساختار نانومتری که شامل Al با اندازه ای درحد نانومتر و همچنین ذرات نانومتری TiH2 را به بوجود آورده بود . در ابتدا آسیاب کردن ، TiH2 تشکیل شده و زمان تشکیل ساختار را ۱ تا ۳ ساعت کمتر کرده است [۳۵].

۱- جزئیات آزمایشات

۱-۱ آسیاب گلوله ای واکنشی و مشخصات پودر آسیاب شده .

پودر آلومینیوم خالص (۹۹٫۵% , – ۳۲۵mesh  خلوص) و تیتانیم (۹۹٫۹% , – ۳۲۵mesh خلوص) با ترکیب شیمیایی Al-5% at Ti باهم ترکیب می شوند . RBM یک آسیاب گلوله ای بزرگ با انرژی زیاد است و دارای ظرفیت ۷٫۸۱  تحت اتمسفر هیدروژن     می باشد شرایط آسیاب کردن بوسیله اثری که بر روی ساختار نانوکریستال آلیاژ Al-Ti  دارد تعیین می شود [۸] زمان آسیاب کردن و سرعت آسیاب کردن بترتیب ۳۰ ساعت و ۲۵۰ rpm می باشد وزن نهایی پودر ۲۰۰gr و نسبت گلوله های آسیاب به پودر ۶۵:۱٫۲wt%?  می باشد عامل کنترل کننده فرآیند استریک اسید (CH3 (CH2)16 COOH) می باشد که اضافه می شود . قبل از شارژ کردن محفظه آسیاب با گاز هیدروژن ، محفظه باید بوسیله Rotary Pump خلاء بشود ( درحدود ۱۰-۳ torr ) . [36]

پودرهای آسیاب شده بعد از طی مرحله آسیاب به ۲۰۰ mesh  می رسند بعد از طی این مراحل آزمایشاتی بوسیله TEM , SEM , XRD بر روی پودر انجام شد و مشاهده شد اندازه دانه ها که بوسیله TEM اندازه گیری شده بود با داده های تئوری از XRD مطابقت داشت . دمای تجزیه TiH2 و تشکیل Al­۳ Ti  بوسیله نمودار DSC در نرخ حرارت دهی ۱۰-۳k/s  و درحضور اتمسفر آرگون محاسبه شدند . بعد از عملیات حرارتی تغییرات ریزساختار و اندازه دانه با نتایج بدست آمده از TEM , XRD اختلاف داشت . [۲۶]

(Con soli dation Temp)  دمای ترکیب شدن : به دمای گفته می شود که در آن دما همه TiH2 تجزیه شده و Al3Ti تشکیل می شود . [۲۶]

۲-۱    اکستروژن گرم

پودرآسیاب شده را در الک -۲۰۰ mesh الک کرده و با اکستروژن گرم پودر را مستحکم می کنند برای اکستروژن پودر از یک محفظه فلزی بنام can همانطور که گفته شده استفاده شده بود . برای مستحکم کردن پودر از پرس سرد با فشاری حدود ۹۸MPa درقوطی از جنس AL6063 و یا از جنس Cu می توان استفاده کرد . این نمونه به عملیات حرارتی قبل از اکستروژن گرم نیاز دارد . قوطی آلومینیومی در دمای ۴۵۰ºC یا ۵۰۰ºC  به یک میله تبدیل می شود . البته بعداز عملیات حرارتی درهمان دما و در حدود ۱ تا ۲ ساعت * سرقوطی را می توان بوسیله جوش قوس آرگون ببندیم و آن را در دمای ۵۰۰ºC و بوسیله پمپ rotary بمدت ۱ تا ۳ ساعت مستحکم کنیم . نسبت اکستروژن ۲۵:۱ است و فشار اکستروژن ۱٫۵GPa ، قطر قطعه اکسترود شده ۱۵nm  است . [۲۶]

۳-۲   تستهای مکانیکی

سختی و ریزسختی وتست کشش بر روی قطعه اکسترود شده انجام شد . سختی بوسیله دستگاه سختی سنج راکول (RockwellB) اندازه گیری شد . اندازه گیری Vickers Micro Hardness با نیروی ۵۰۰gr و دستگاه Leitz انجام شد . نمونه برای تست کشش از روی ا ستاندارد ASTM- E8M تهیه شده و طول gage آن ۲۰mm بود با قطر سطح قطعه ۴mm که دردستگاه۲۰۰۰LBS  SATECDLF20 تست شده . تست کش با نرخ کرنش   ۴٫۲ x10-4s-1 در دمای اتاق و دماهای بالاتر(۵۰۰ºC , 400ºC , 300ºC) انجام شد . نتایج تست کشش این قطعه با آلیاژ Al-Ti که بوسیله آلیاژسازی مکانیکی و در اتمسفر آرگون تهیه شده بود و سپس اکستروژن گرم شده بود مقایسه می شود .

چگالی بوسیله قانون ارشمیدس اندازه گیری شد . ریزساختار قطعه اکسترود شده و نمونه ای که تست کشش بروی آن انجام شده بود بوسیله TEM بررسی شد .

نظرات 0 + ارسال نظر
امکان ثبت نظر جدید برای این مطلب وجود ندارد.