فرمت : WORD تعداد صفحه :49
مقدمه
کسی که هندسه نمیداند از این در داخل نشود،
کتیبة سر در روی آکادمی افلاطون
بیشتر مردم نمیدانند که در حدود یک سده و نیم پیش انقلابی در زمینة هندسه روی داد که از لحاظ علمی به عمق انقلاب کوپرنیکی در نجوم، و از جنبة نتایج فسلفی به اهمیت نگرة تکامل داروین بود. کاکستر[1]، هندسهدان کانادایی مینویسد: «تأثیر کشف هندسة هذلولوی در تصوری که از حقیقت و واقعیت داریم آنچنان عمیق بوده است که بدشواری میتوانیم تصور کنیم که امکان وجود هندسهای غیر از هندسة اقلیدسی تا چه اندازه در سال 1820 تکان دهنده جلوه کرده است.» اما همة ما امورزه نام هندسة فضا – زمان نگرة نسبیت اینشتاین را شنیدهایم. «در واقع، هندستة پیوستار[2] فضا – زمان به حدی به هندسة تا اقلیدسی وابسته است که آگاهی از این هندسهها شرط لازم برای درک کامل جهانشناسی نسبیت است.»
[1] -H.S.M.Coxeeter
[2] -continuum
هندسة اقلیدسی، همان هندسهای که شما در دبیرستان خواندهاید، هندسهای است که بیشتر برای تجسم جهان مادی به کار میبریم. این هندسه از کتابی به نام اصول[1] به دست ما رسیده که توسط اقلیدس، ریاضیدان یونانی، در حدود 300 سال پیش از میلاد مسیح نگاشته شده است. تصوری که ما براساس این هندسه از جهان مادی پیدا کردهایم تا حد زیادی به توسط آیزک نیوتن در اواخر سدة هفدهم ترسیم شده است.
هندسههایی که اقلیدسی نیستند از مطالعة عمیقتر موضوع توازی در هندسة اقلیدسی پیدا شدهاند. دو نیمخط موازی عمود بر پاره خط PQ را در نمودار زیر در نظر بگیرید:
در هندسة اقلیدسی فاصلة (عمودی) بین دو نیمخط هنگامی که به سمت راست حرکت میکنیم همواره مساوی فاصلة P تا Q باقی میماند؛ ولی در اوایل سدة نوزدهم دو هندسة دیگر پیشنهاد شد. یکی هندسة هذلولوی (از کلمة یونانی هیپربالئین به معنی «افزایش یافتن») که در آن فاصلة میان نیمخطها افزایش مییابد، دیگری هندسة بیضوی[2] (از کلمة یونانی الیپن «کوتاه شدن») که در آن این فاصله رفته رفته کم میشود و سرانجام نیمخطها همدیگر را میبرند. این هندسههای نااقلیدسی بعدها به توسط ک.ف. گاوس و گ.ف.ب. ریمان در قالب هندسة کلیتری بسط داده شدند (همین هندسة کلیتر است که در نگرة نسبیت عام اینشتاین مورد استفاده قرار گرفته است[3]).
در این کتاب ما به هندسههای هذلولوی و اقلیدسی خواهیم پرداخت. هندسة هذلولوی تنها به
[1] -Elements
[2] -elliptic geomentry
[3] -نگرة نسبیت خاص اینشتین که برای مطالعة پاریزههای زیر اتمی لازم است. براساس هندسة سادهتر فضا – زمان، که هـ. مینکوفسکی واضح آن است نهاده شده است. نامهای «هندسة هذلولوی» و «هندسة بیضوی» توسط ف. کلاین گزیده شده است. بعضی مؤلفان این هندسهها را بترتیب «هندسة لوباچفسکی» و «هندسة ریمانی» مینامند که اصطلاحاتی گمراه کنندهاند.
فرمت : WORD تعداد صفحه :23
اعداد اول
اعداد اول اعدادی طبیعی هستند که بر هیچ عددی بجز خودشان و عدد ۱ بخشپذیر نباشند. تنها استثنا عدد ۱ است که جزو این اعداد قرار نمیگیرد. اگرعددی طبیعی وبزرگتر از ۱ اول نباشد مرکب است.
عدد یکان اعداد اول بزرگتر از ۱۰ فقط ممکن است اعداد ۱، ۳، ۷، ۹ باشد.
پیدا کردن ضابطه ای جبری برای اعداد اول جزو یکی از معماهای ریاضی باقیمانده است و هنوز کسی به فرمولی برای آنها به دست نیاورده است.
دنبالهٔ اعداد اول به این صورت شروع میشود: ۲، ۳، ۵، ۷، ۱۱، ۱۳، ۱۷، ۱۹ ...
قضیه ۱: تعداد اعداد اول بینهایت است.
برهان: حکم را به روشی که منسوب به اقلیدس است اثبات میکنیم: فرض کنید تعداد اعداد اول متناهی و تعداد آنها n تا باشد. حال عدد M را که برابر حاصلضرب این اعداد به علاوه ۱ را در نظر بگیرید. این عدد مقسومعلیهی غیر از آن n عدد دارد که با فرض در تناقض است.
قضیه ۲ (قضیه اساسی حساب): هر عدد طبیعی بزرگتر از ۱ را می توان به شکل حاصلضرب اعدادی اول نوشت.
قضیه ۳ (قضیه چپیشف):اگر n عددی طبیعی و بزرگتر از ۳ باشد، حتما" بین n و ۲n عدد اولی وجود دارد. قضیه ۴ هر عدد زوج را میتوان بصورت جمع سه عدد اول نوشت.
قضیه ۵ هر عدد فرد (شامل اعداد اول) را میتوان به صورت جمع سه عدد اول نوشت (اثبات بر پایه قضیه ۴)
قضیه 6-هر عدد فرد را میتوان به صورت دو برابر یک عدد اول بعلاوه یک عدد اول دیگر نوشت (برهان آن را بنویسد).
خواص اعداد اول:
1- هر عدد اول برابر است با 6n+1 یا 6n-1 که n یک عدد صحیح است.
2-مجذور هر عدد اول برابر است با 24n+1.
3-تفاضل مجذورهای دو عدد اول مضربی
فرمت : WORD تعداد صفحه :19
* لئوپولد کرونکر ریاضیدان آلمانی اظهار داشته است که خداوند اعداد صحیح را آفرید و بشر باقی ریاضیات را. *
درباره ی اعداد اول
در بین اعداد طبیعی بزرگتر از یک یعنی ...و 4و3و2 اعدادی وجود دارند که
تنها بر یک و خود بخش پذیرند، این اعداد را اعداد اول می نامند. اعداد اول
مبنایی برای همه ی عددهای طبیعی است ، به این معنی که هر عدد طبیعی به صورت
حاصل ضرب توانی از اعداد اولی است که مقسوم علیه های این عددند. به عنوان
مثال
.
نخستین هفت عدد اول متمایز عبارتند از: 2و3و7و11و13و17. اینک این سؤال پیش
می آید که آیا این رشته از اعداد مختوم است یا اینکه تا بی شمار ادامه
دارد. به عبارت دیگر آیا بزرگترین عدد اول وجود دارد یا نه. جواب این است
که بزرگترین عدد اول وجود ندارد. این موضوع از عصر طلائی یونانیان مکشوف
بوده و توسط اقلیدس در سه قرن قبل از میلاد به اثبات رسیده است. استدلال وی
بی اندازه ساده و مبرهن است و هنوز هم تازگی خود را حفظ کرده. پس از اثبات
نامتناهی بودن مجموعه ی اعداد اول سؤالاتی دیگر در مورد این اعداد مطرح می
شود، که به بعضی از آنها پاسخ داده شده ، ولی برخی هم همچنان بی جواب باقی
مانده اند. در این جا چند نمونه از این سؤالات مورد بررسی قرار می گیرند، و
ضمناً برهان اقلیدس نیز ارائه خواهد گردید.
معلوم نیست که مفهوم اول برای
فهرست مطالب
موضوع صفحه
اعداد اول .............................................................1
درباره ی اعداد اول ...................................................1
قضایای اعداد اول ....................................................4
خواص اعداد اول ....................................................7
روشی برای شکار اعداد اول ........................................8
پیچیده گی های اعداد اول..........................................15
نتیجه گیری...........................................................16
فرمت : WORD تعداد صفحه :27
مقدمه: در تاریع آمده است که اولین بار یک ریاضیدان انگلیسی تبار به نام کیلی ماتریس را در ریاضیات وارد کرد. با توجه به آنکه در آن زمان ریاضیدانان اغلب به دنبال مسائل کاربردی بودند، کسی توجهی به آن نکرد. اما بعدها ریاضیدانان دنباله ی کار را گرفتند تا به امروز رسید که بدون اغراق می توان گفت در هر علمی به گونه ای با ماتریس ها سروکار دارند. یکی از نقش های اصلی ماتریس ها آن است که آنها ابزار اساسی محاسبات عملی ریاضیات امروز هستند، درست همان نقشی که سابقاً اعداد بر عهده داشتند. از این نظر می توان گفت نقش امروز ماتریس ها همانند نقش دیروز اعداد است. البته، ماتریس ها به معنایی اعداد و بردارها را در بر دارند، بنابراین می توان آنها را تعمیمی از اعداد و بردارها در نظر گرفت. در ریاضیات کاربردی ماتریس ها از ابزار روز مره هستند، زیرا ماتریس ها با حل دستگاه معادلات خطی ارتباط تنگاتنگی دارند و برای حل ریاضی مسائل عملی، مناسبترین تکنیک، فرمول بندی مسئله و یا تقریب زدن جوابهای مسئله با
زیرا ماتریس ها با حل دستگاه معادلات خطی ارتباط تنگاتنگی دارند و برای حل ریاضی مسائل عملی، مناسبترین تکنیک، فرمول بندی مسئله و یا تقریب زدن جوابهای مسئله با دستگاه معادلات خطی است که در نتیجه ماتریس ها وارد کار می شوند. اما، مشکلی اصلی در ریاضیات کابردی این است که ماتریس های ایجاد شده، بسیار بزرگ هستند و مسئله اصلی در آنجا کار کردن با ماتریس های بزرگ است. از جنبه نظری، فیزیک امروزی که فیزیک کوانتوم است، بدون ماتریس ها نمی توانست به وجود آید. هایزنبرگ – اولین کسی که در فیزیک مفاهیم ماتریس ها را به کار برد- اعلام کرد «تنها ابزار ریاضی که من در مکانیک کوانتوم به آن احتیاج دارم ماتریس است.» بسیاری از جبرها مانند جبر اعداد مختلط و جبر بردارها را با ماتریس ها بسیار ساده می توان بیان کرد. بنابراین با مطالعه ماتریسها، در واقع یکی از مفیدترین و در عین حال جالبترین مباحث ریاضی مورد بررسی قرار می گیرد.
تعریف ماتریس: اگر بخواهیم مانند کیلی، ماتریس را تعریف کنیم، باید گفت هر جدول مستطیلی که دارای تعداد سطر و ستون است و در هر خانه آن یک عدد وجود دارد یک ماتریس است. به عبارت دیگر هر آرایشی از اعداد مانند مثالهای زیر را ماتریس می گویند.
اگر ماتـریس
را A بنامیـم، در این صورت ماتـریس ] 15و10 و 1-[ را سطـر اول و ] 19و7 و5[ را سطر دوم و
،
،
را به ترتیب ستون اول، ستون دوم، ستون سوم A گویند. ماتریس A را که دارای دو سطر و ستون است یک ماتریس دو در سه (2و3) می گویند. اصطلاحاً می گوییم A از مرتبه 2 در 3 است. (نوشته می شود 3×2). بنابراین ماتریس ] 7و5 و12[ B= یک ماتریس 4×1 و ماتریس C یک ماتریس 3×3 است.
به اعداد یا اشیاء واقع در جدول ماتریس درایه های آن ماتریس می گویند. درایه های هر ماتریس در جا ومکان مشخصی قرار دارند. مثلاً در ماتریس درایه 3 در سطر اول و ستون اول است. همچنین درایه سطر دوم، ستون سوم عدد 6 است. به طور کلی اگر درایه های سطر I ام ستون jام را با aij نشان دهیم؛ داریم
… و 5=12a 2=22a 3=11a
فرمت : WORD تعداد صفحه :12
از پیشینه این نوع برخورد با قرآن اطلاع چندانی در دست نیست، ولی از آنجا که سیوطی در کتاب الاتقان فی علوم القرآن به این موضوع پرداخته، میتوان دریافت که این موضوع چندان غریب نبوده. با این حال توجه جدی به این موضوع در دهه هفتاد میلادی، با ادعاهای رشاد خلیفه آغاز شد. او ادعا کرد که نظمی رادر قرآن کشف نمودهاست که ویژگی خاص قرآن بوده و یکی از بزرگترین وجوه اعجاز آن به شمار میرود.کشف رابطه ریاضی در قرآن، موجب گردید که برخی از پژوهشگران مسلمان برای کشف اسرار و رموز بیشتری از قرآن به آمارگیری از تعداد حروف و کلمات قرآن بپردازند. برخی از شاگردان یا پیروان رشاد، چون «عبدالله آریک»[۱] با چاپ کتابی، نظریات او را در باب «عدد نوزده» تکمیل نمودند. با اینحال برخی دیگر از اندیشمندان اسلامی نیز بودند که به طرح نظریات جدید ریاضی و مستقل از رشاد پرداختند.پس ازآنکه رشاد خلیفه، نظریاتش را بسط داد، با استفاده از همان نظریه ریاضی، دو آیه آخر از سوره توبه در قرآن را تحریفشده و افزوده شده دانست،[۲][۳] و نهایتاً ادعا نمود خداوند او را رسول میثاق نموده است و نام او در قرآن کد شده است. خلیفه همچنین از سایر متون مذهبی در کنار قرآن مثل «سنت پیامبر» و «احادیث» به عنوان منابع جعلی نسبت داده شده به محمد و در تضاد با قرآن، یاد کرد و کشف واقعیت این متون و آموزههای جعلی را از وظایف رسالت خویش دانست.[۴] .[۵] این امر موجب شد تا محققین اسلامی شروع به نقد نظریه رشاد و دیگر همکاران و پیروان نظریات او نموده و ادعاهای وی را انکار کنند.[۶]
جدای از درستی یا نادرستی، نظریات ریاضی در حیطه قرآن قابل بررسی و تامل است. بخصوص آنکه در این میان، نظریات دیگری پدید آمدند که اگرچه از دیدگاه ریاضی به قرآن پرداختهاند اما کاملاً مستقل از نظریه رشاد و عدد ۱۹ وی بودهاند، از آن جمله میتوان از مهدی بازرگان، نام برد که تاکنون نظریهاش مورد تعرض جدی مخالفان واقع نشدهاست.[۷]
در سال ۱۹۷۲(میلادی) میلادی رشاد خلیفه مقالهای منتشر کرد بنام «عدد۱۹، معجزه عددی در قرآن» و پس از آن در کتاب خود[۸] نظریه خود، مبنی بر کشف یک رابطه ریاضی در تعداد سورهها، آیهها، کلمات و حروف کتاب قرآن را رونمایی کرد. او انگیزه خود را اثبات اعجاز و غیر بشری بودن قرآن خواند تا بدین ترتیب اثبات کند که قرآن همانند انجیل نوشته دست بشر نیست و انشای خداوند است.وی ادعا نمود که
فرمت : WORD تعداد صفحه :39
خلاصه
این مقاله به بررسی جنبههای مختلف و رو به رشد منطق محاسباتی میپردازد. تکنیکها و کاربردهای فعلی آن را مطالعه میکند و در نهایت به یک نتیجهگیری و ارایه پیشنهادهایی در مورد منطق محاسباتی میپردازد.
1- مقدمه
منطق محاسباتی[1] بخشی از منطق است که به بررسی راهکارهای محتلف بررسی درستی احکام در دستگاههای مختلف منطقی میپردازد. این رشته به طور عمیقی با علوم کامپیوتر پیوند یافته است و به صورت کلی رشد واقعی آن از وقتی شروع شد که توان محاسباتی کامپیوترها پیشرفت کرد و انجام محاسبات پیچیده بوسیله کامپیوترها با هزینه کم امکان پذیر شد. منطق محاسباتی به صورت کلی به منطق از دید محاسباتی آن مینگرد. این که در یک دستگاه منطقی انجام یک محاسبه (به طور مثال چک کردن درستی یک گزاره) امکان پذیر هست یا نه و اگر امکان پذیر است این کار چه هزینه ای دارد. از آنجا که حقایق علمی ما با منطق پیوند عمیقی دارند، برای بررسی این حقایق استفاده از زبان منطقی، یکی از بهترین راه های ممکن است.
امروزه بشر علاقه زیادی دارد که تمام کارها از جمله فکر کردن را به ماشین واگذار کند. اما واگذار کردن فکر کردن به یک ماشین کار ساده ای نیست. ما دید عمیقی درباره اینکه فکر کردن چیست و چگونه انجام میشود نداریم. ازینرو تلاشهای اولیه برای این کار با شکست مواجه شدند یا با سختی زیادی همراه بودند. اما اگر بخواهیم تنها قسمت منطقی فکر کردن را به ماشین واگذار کنیم کار ساده تر است چون برای این کار از منطق ریاضی استفاده میکنیم و منطق یک زیر شاخه قوی از ریاضی است که به سوالات زیادی در مورد آن جواب داده شده است. گرچه ما هنوز واقعا نمیدانیم که چه مقدار از روند تفکر ما منطقی است. به این مطلب در قسمت نتیجه گیری بیشتر خواهیم پرداخت.
امروزه منطق محاسباتی کاربرد گسترده ای در تکنولوژی پیدا کرده است. بدین ترتیب حجم کارهای انجام شده بر روی آن در حال افزایش است. این کارها نه تنها در زمینه ریاضی بلکه بر روی دیگر ابعاد مربوط به این قضیه نیز انجام میشود. عموما این کارها به سه دسته تقسیم میشوند. دسته اول کارهای مرتبط با پایه ریاضی منطق محاسباتی هستند. دسته دوم کارهای مرتبط با تکنیکهای هوش مصنوعی جهت ارتقای کارایی روشهای ریاضی ابداع شده و دسته سوم کارهای انجام شده جهت استفاده از منطق محاسباتی در مسایل واقعی مهندسی.
[1] Computational Logic
فرمت : WORD تعداد صفحه :12
اصل لانه کبوتر بسیار روشن است و بسیار ساده به نظر میرسد، گویی دارای اهمیت زیادی نیست، ولی در عمل این اصل دارای اهمیت و قدرت بسیار زیادی است، زیرا تعمیمهای آن حاوی نتایجی عمیق در نظریه ترکیباتی و نظریه اعداد است. وقتی میگوئیم در هر گروه سه نفری از مردم حداقل دو نفر، هم جنساند در واقع اصل لانه کبوتر را به کار گرفتهایم. فرض کنیم به تازگی در دانشکدهای، یک گروه علوم کامپیوتر تاسیس یافته که برای 10 عضو هیئت علمی آن فقط 9 دفترکار موجود باشد. آنگاه باز هم ایده نهایی در پشت این ادعای بدیهی که حداقل از یک دفترکار بیشتر از یک نفر است استفاده میکنند، اصل لانه کبوتر است. اگر به جای 10 نفر 19 عضو هیئت علمی وجود داشته باشد، آنگاه حداقل از یک دفترکار بیشتر از دو نفر استفاده میکنند. همینطور، اگر در دانشکدهای حداقل 367 دانشجو وجود داشته باشند، باز آشکار است S حداقل دو نفر از آنها روز تولدشان یکی است. میگویند که
ایده اساسی حاکم بر همهی این موارد حقیقت سادهای مشهور به اصل لانهکبوتر دیر بلکه است.
که عبارت است از:
فرض کنید k و n دو عدد طبیعیاند. اگر بخواهیم بیشتر از nk+1 شی را در n جعبه قرار دهیم، حداقل یک جعبه وجود دارد که در آن حداقل k+1 شی قرار گرفته باشد. در حالت خاص، اگر حداقل n+1 شی را در n جعبه قرار دهیم، جعبهای وجود دارد که در آن حداقل دو شی قرار گرفته باشد.
حل: میتوانیم 17 نفر را 17 نقطه در نظر بگیریم که هر دوتایی به توسط یک بال به هم وصل شدهاند. بالی را که X و Y را به هم متصل میکند، آبی میکنیم اگر آن دو درباره موضوع (1) بحث کرده باشند و قرمز میکنیم اگر راجع به موضوع (2) بحث کرده باشند و به رنگ زرد در میآوریم. اگر آن دو درباره موضوع (3) با هم به بحث پرداخته باشند. بنابراین هر کدام از 16 بالی که از A گذشتهاند با یکی از سهرنگ آبی، قرمز یا زرد رنگ شده است. از آنجایی که 1+3×5=16، طبق اصل لانه کبوتری حداقل 1+5 رأس یافت میشود، که با یک رنگ به A متصل شده باشند. بدون اینکه به کلیت مساله لطمه بخورد فرض میکنیم یالهای AG,AF,AE,AD,AC,AB با رنگ آبی، رنگآمیزی شده باشند. حال 6 رأس G,F,E,D,C,B را در نظر بگیرید که با 15 یال به هم متصل شدهاند. اگر هر کدام از این یالها (مثلاً BC) به رنگ آبی باشد. آنگاه این یالها با رنگهای قرمز یا زرد خواهیم داشت. و این به این معنی است که حداقل سه نفر وجود دارند که با هم راجع به یک موضوع بحث کرده باشند.
«
فرمت : WORD تعداد صفحه :36
مقدمهای از معادلات دیفرانسیل معمولی»
یک معادله دیفرانسیل معمولی هست رابطهای بین یک تابع و مشتقل های آن و
متغیرهای مستقل که به آنها بستگی دارند، فرم کلی از یک معادله دیفرانسیل
معمولی عبارتست از (6.1)
وقتی که تا مشتق مرتبه m ام تابع y موجود باشد، همچنین y و مشتقاتش تابعی از متغیر مستقل t
خواهند بود، مرتبه یک معادله دیفرانسیل عبارتست از مرتبه بزرگترین مشتق
موجود در آن، و درجه یک معادله دیفرانسیل عبارتست از درجه مشتق از مرتبه
بالا که با دیگر مشتقات رابطه دارد.
اگر بین تابع متغیر y(t) با خودش و یا هر یک از
مشتقاتش نتوان رابطهی دقیق را بدست آورد. معادله به یک معادله خطی تبدیل
می شود، فرم کلی یک معادله دیفرانسیل خطی از مرتبه m عبارتست از (6.2)
که هر کدام از
ها توابع شناخته شده ای هستند:
اگر معادله دیفرانسیل غیر خطی (6.1) از مرتبه m را بتوان به فرم (6.3) 
درآورد آن گاه معادله (6.3) نامیده میشود یک تابع اولیه از معادله دیفرانسیل (6.1) . به این فرم که بالاترین مرتبه مشتق عبارتست از رابطهای بین مشتقات از مرتبه پایینتر و متغیرهای مستقل.
«مسائل مقدار اولیه»
یک راه حل عمومی برای یک معادل دیفرانسیل عادی مانند (6.1) هست یک رابطهای بین y و t و m مقادیر دلخواه ثابت، که معادله را مورد قبول قرار میدهند در حالی که محتوی مشتقات نمی شود. این راه حل شاید یک رابطه ضمنی به فرم (6.4)
یا یک تابع صریح برحسب t به فرم (6.5)
باشد.
این m مقادیر دلخواه ثابت
می تواند تعیین شود بوسیله شرایط m گانه به فرم (6.6)
فرمت : WORD تعداد صفحه :15
انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجه هایش را می داند انجام می داد اما به زودی مجبور شد وسیله شمارش دقیق تری بوجود آورد لذا به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده می باشد قدیمی ترین دستگاه شماری است که آثاری از آن در کهن ترین مدارک موجود یعنی نوشته های سومری مشاهده می شود. سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بین النهرین یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند. نخستین دانشمند معروف یونانی طالس ملطلی (639- 548 ق. م.) است که در پیدایش علوم نقش مهمی به عهده داشت و می توان وی را موجد علوم فیزیک، نجوم و هندسه دانست. در اوایل قرن ششم ق. م. فیثاغورث (572-500 ق. م.) از اهالی ساموس یونان کم کم ریاضیات را بر پایه و اساسی قرار داد و به ایجاد مکتب فلسفی خویش همت گماشت. پس از فیثاغورث باید از زنون فیلسوف و ریاضیدان یونانی که در 490 ق. م. در ایلیا متولد شده است نام ببریم. در اوایل نیمه دوم قرن پنجم بقراط از اهالی کیوس قضایای متفرق آن زمان را گردآوری کرد و در حقیقت همین قضایا است که مبانی هندسه جدید ما را تشکیل می دهند. در قرن چهارم قبل از میلاد افلاطون در باغ آکادموس در آتن مکتبی ایجاد کرد که نه قرن بعد از او نیز همچنان برپا ماند.
فرمت : WORD تعداد صفحه :27
|
ظهور احتمال
اما ظهور احتمال به صورت یک نظریه ریاضی نسبتاً جدید است.
مصریان قدیم در حدود ۳۵۰۰ سال قبل از میلاد برای بازی از چیزی که امروزه آن را "قاپ" مینامند و شیئی استخوانی شبیه تاس چهار وجهی است استفاده میکردندکه در استخوان زانوی پای بعضی از حیوانات وجود دارد.
تاس شش وجهی معمولی در حدود سالهای ۱۶۰۰ بعد از میلاد ساخته شد و از آن به بعد در تمام انواع بازیها ابزار اصلی بوده است.