فرمت : WORD تعداد صفحه :13
- معادلات فرد هولم
شباهت ها با جبر ماتریسی: سه معادله انتگرال زیر را در نظر بگیرید

حدود تغییرات انتگرال گیری و تعریف توابع شامل
است.
حدود انتگرال گیری را تا لازم نباشند ذکر نمی کنیم. قبل از اینکه جواب،
این معادلات را مطرح کنیم بهتر است که تقریب هایی ساده برای آنها بدست
آوریم، سپس تقریب ها را مورد بحث قرار دهیم. برای این کار می توانیم ایده
ای از خواص معادلات انتگرال را بدست آوریم، هر چند عموماً این خواص را به
جای اثبات فقط معین می کنیم. در اینجا فرض می کنیم که معادلات ناتکین
هستند.
فرض کنید
یک عدد صحیح باشد و q,p اعداد صحیح مثبت کمتر از
باشند. قرار می دهیم:
.
با میل
به سمت بی نهایت و h به سمت صفر، به درستی انتظار داریم که تقریب بهتر و بهتر شود.

اکنون
، تقریبی برای
است و در نتیجه مجموعه معادلات زیر
(4-2)
(5-2)
(6-2)

به ترتیب تقریب هایی برای معادلات انتگرال (1-2)، (2-2)و(3-2) هستند.
معادلات (4-2)،(5-2)و(6-2) را می توان به ترتیب، به صورت ماتریسی بازنویسی کرد.
فرمت : WORD تعداد صفحه :13
فرض کنید :
- ۱۰۰ نفر آدم با هوش در یک سالن زندانی هستند.
- حداقل یک نفر و حداکثر همه آنها دارای یک خال بر روی صورتشان هستند.
- هیچ کدام از این افراد نمی دانند که آیا خود دارای خال هستند یا نه.
- به آنها گفته شده که به ازای هر آدم خال دار یک شبانه روز ( نه کمتر و نه بیشتر) مهلت دارند که آدم های خال دار از سالن بیرون بیایند.
- این افراد نمی توانند هیچ ارتباطی با افراد دیگر موجود در سالن برقرار کنند.
- تنها ارتباط موجود دیدن صورت افراد دیگر است.
- به هیچ امکانی هم دسترسی ندارند که صورت خود را ببینند.
- خلاصه پیغام و پیام و آینه و .... ممنوع است.
- تعداد افراد خال دار معلوم نیست.
سؤال : با چه روشی ممکن است که فقط افراد خال دار در پایان مهلت تعیین شده (n روز به ازای n خال دار) از سالن خارج شوند؟
جواب - > فرض کنین یه نفر تو قبیله خال داشته باشه. اون فرد خالدار بقیه قبیله رو میبینه که هیچ کس خالدار نیست ولی چون رییس قبیله گفته اینجور افراد حتما وجود دارند، نتیجه میگیره فقط خودش خالداره و همون روز اول خودش رو میکشه. از طرف دیگه بقیه افراد بدون خال میبینن یه نفر خال داره ولی خودشون نمیدونن خال دارن یا نه. مثل بالا برای خودشون استدلال میکنن که اگه خودشون خال نداشته باشن اون فرد خالدار باید امروز خودش رو بکشه و اگر خودشون خال داشته باشن اون فرد دیگه امروز رو منتظر خواهد موند. اون فرد خالدار روز اول خودشو میکشه و بقیه میفهمن که خودشون خالدار نبودن. این از یکی.
حالا برای دو نفر همین استدلال رو تکرار کنین. فرض کنین دو نفر تو قبیله خال دارن. اونی که خالداره میبینه یه نفر تو قبیله خال داره ولی نمیدونه خودش هم خال داره یا نه. با خودش میگه اگه من خال نداشته باشم اون فرد خالدار باید امروز خودش رو بکشه و اگر خال داشته باشم باید منتظر بمونه. اون فرد دیگه هم همین جور استدلال میکنه و هر دوشون روز اول رو کاری نمیکنن و منتظر میمونن. در نتیجه میفهمن که هر دو تا خالدارن و روز دوم خودشون رو میکشن. اما اونایی که خال ندارن میبینن دو نفر تو قبیله خال دارن. اونا دو روز صبر میکنن تا سرنوشت این دو تا معلوم بشه و چون روز دوم اون دو نفر خودشون رو میکشن میفهمن که خودشون خال نداشتن.
به همین ترتیب میتونین برای سه نفر و چهار نفر و ... تکرار کنین استدلال رو. در نتیجه اگه n نفر خالدار باشن تا روز n-1 ام صبر میکنن و بقیه که خال ندارن تا روز n ام. روز n ام افراد خالدار دسته جمعی خودشون رو میکشن و از اینجا بقیه میفهمن که خودشون خال ندارن. یعنی تا صبح روز n+1 فرد خالداری تو قبیله وجود نخواهد داشت. پس تو این قبیله ما 7 نفر خالدار بودن چون تا صبح روز هشتم دیگه فرد خالداری تو قبیله نبوده
فرمت : WORD تعداد صفحه :20
-1-مقدمه :
بطورکلی یک مسأله مقدار مرزی بصورت زیر می باشد :

(1-1)
که در آن L یک عملگر دیفرانسیلی مرتبه m ام ، r یک تابع مفروض و
شرایط مرزی می باشند . فرض کنید x یک متغیر مستقل برای مسأله مقدار مرزی باشد و
شرایط مرزی در دو نقطه (مرزها) باشد بنابراین رابطة
(1-1) را می توانیم به فرم خطی زیر نیز بنویسیم :

(1-2)
برای
، k تا شرط مرزی مستقل خطی که تنها شامل مشتقات تا مرتبه (q-1)ام می باشند را شرایط مرزی essential (اساسی) می گوئیم . و (
) شرط باقیمانده را شرایط مرزی Suppressible می نامیم . ساده ترین مسأله مقدار مرزی که با معادلة دیفرانسیل مرتبه دوم می باشد بصورت زیر است :
فرمت : WORD تعداد صفحه :13
عمرخیام
حکیم ابوالفنح عمرخیام ازبرجسته ترین حکما وریاضی دانان جهان اسلام به شمار می رود. وی درشهرنیشابوردرسال(429 ه ق) دیده به جهان گشود وهمانجا زیست
و درسال(517 ه ق) جان به جان آفرین تسلیم کرد. خیام به قدری در ریاضیات پیشرفت کرده بود که ازسوی ملکشاه سلجوقی فرا خوانده شد تا تقویم را اصلاح کند. حاصل کاراودراین زمینه تقویم جلالی است که هنوزاعتبار و رواج دارد واز تقویم گریگوریایی دقیق تراست.
او دوازده کتاب ازخود به جا گذاشته که مهمترین آنها کتاب جبراست. درزمان ما دکتر غلامحسین مصاحب ریاضی دان ایرانی با تالیف کتاب حکیم عمرخیام به عنوان عالم جبر برای نخستین بارمقام علمی عمرخیام را درریاضیات به طور مستقل به فارسی زبانان شناساند.
فرمت : WORD تعداد صفحه :6
برای اولین بار خوارزمی این مسئله را به صورت زیر مطرح کرد:
ابتدا یک درم را بین تعدادی مرد تقسیم کرده ایم.
یک مرد دیگر به تعداد نفرات اضافه شد، مجبور شدیم دوباره یک درم را بین افراد حاضر تقسیم کنیم؛ پس از تقسیم، به هر نفر از مردها، 6/1 کمتر از بار اول رسیده است. حال این سؤال توسط خوارزمی مطرح شد که تعداد مردان در تقسیم اول چند نفر بوده است؟
فرمولبندی مسئله:
بنا به فرض مسئله؛ اگر x را تعداد مردان در تقسیم اول در نظر بگیریم، به هر مرد 1/x درم می رسید. در صورتی که در تقسیم دوم به هر نفر 1/(x+1) درم می رسد. بنابراین، معادله ی مسئله ی خوارزمی به صورت زیر می باشد (چرا؟):

خوارزمی می گوید، معنای مسئله این است که باید تعداد مجذور مردان به اضافه تعداد آن ها، برابر 6 شود (چرا؟):
فرمت : WORD تعداد صفحه :40
METHODS
«روشهای تفاضل متناهی»
روابط واضح یا غیرواضح بین مشتقات و مقادیر توابع در نقاط آغازی وجود دارد.
نقاط آغازی بر روی [a,b] می تواند به وسیله [j= 1,2,…,N] و xj= a+jh به طوریکه
،
،
در نظر گرفته شود.
این عبارت برای مشتقات تحت شرایط مقادیر تابعی است.
جواب مسأله مقدار مرزی یک تفاضل متناهی بوسیله جایگذاری معادله دیفرانسیل در هر نقطه آغازین به وسیله یک معادله تفاضلی بدست می آید.
با در نظر گرفتن شرایط مرزی در معادلات تفاضلی، سیستم جبری معادلات مورد حصول حل می شود، این یک جواب عددی تخمینی برای مسأله مقدار مرزی بدست می دهد.
- Linear Second Order Differential Equations
[معادلات دیفرانسیل خطی مرتبه دوم] [صفحه 5, 4 ]
به معادله دیفرانسیل مرتبه دوم زیر توجه می کنیم:
،
(46)
در رابطه با شرایط مرزی نوع اول:
،
(47)
مقدار قطعی u(m) از
با
مشخص شده و مقدار تقریبی آن با
، با استفاده از سریهای تیلورها می توانیم مشخص کنیم که:
فرمت : WORD تعداد صفحه :38
مقدمه
مدلها و استراتژی ماتریس
ارزیابی عملکرد
مدل سینک و تاتل (1989)
ماتریس عملکرد (1989)
مدل نتایج و تعیین کننده ها (1991)
هرم عملکرد (1991)
کارت امتیازدهی متوازن (1992)
مدل ماتریس استراتژی اصلی
مدل ماتریس پورت فولیو
ویژگیهای ماتریس های پورت فولیو
ماتریس داخلی و خارجی
مدل گروه مشاوره ای بوستون 4(ماتریس BCG )
مدل شرکت جنرال الکتریک (GE):
ماتریس تهدیدات، فرصت ها، نقاط قوت و نقاط ضعف( SWOT)
ماتریس داخلی و خارجی (IE) (4)
ماتریس ارزیابی موقعیت و اقدام استراتژیک (Space)11
ماتریس داخلی و خارجی ( IE )
ماتریس BCG و GE
ماتریـس کاتـلر و آنسـوف
مقدمه
فقدان ساختار علمی در انتقال استراتژیهای تدوین شده به سطوح تصمیمگیری پایین سازمان، باعث بروز مسائلی در بخش صنایع تولیدی میشود. ادبیات استراتژیهای آکادمیک، بیانگر مفاهیم و روشهای تدوین استراتژیها از دیدگاه بازار است، در حالی که بین تدوین استراتژیها و اجرای آنها، اغلب شکافی آشکار بروز میکند. هدف مقاله حاضر، ارائه نوعی مدل تصمیمگیری است که بین مفاهیم استراتژیهای تولیدی و تصمیمگیریهای استراتژیک، مطابق با اصول جریان سیستمهای تولیدی، ارتباط برقرار کند. نتیجه مقاله، بیانگر انتقال استراتژیها از سطوح تصمیمات استراتژیک به سطوح تصمیمگیری براساس اصول جریان زیرسیستمهاست.
فرمت : WORD تعداد صفحه :23
مقدمه:
حل مسئله از دو جنبه اهمیت دارد. اول آن که از اهداف مهارتی مهم در آموزش ریاضیات است و از طرف دیگر می توان گفت انجام هر فعالیت با پاسخ دادن به سؤال ها و یا تمرین های ریاضی (که ممکن است به منظور تقویت مهارتی طرح شده باشد.) به نوعی حل مسئله است. با این تعریف حل مسئله چتری است که بر روی تمام اهداف مهارتی و به تعبیری دیگر بر تمام آموزش ریاضی قرار می گیرد.
در استانداردهای آموزش ریاضی این گونه بیان شده است، حل مسئله قلب تپیده یا نقطه ی تمرکز آموزش ریاضی است.
مسئله را می توان به زبان ساده تعریف کرد. هرگاه فردی بخواهد کار دیگری انجام دهد یا جای دیگری باشد، ولی نتواند به هدف خود برسد، مسئله ایجاد می شود. حل مسئله، نوعی از یادگیری بسیار پیچیده است. مسئله و تلاش برای حل آن جزیی از زندگی هر فرد است. تعلیم و تربیت باید دانش آموزان را برای برخورد با زندگی آینده آماده کند. فرآیند برخورد با شرایط زندگی را حل مسئله می نامند.
در آموزش ریاضی دو دیدگاه و یا رویکرد کلی در مورد حل مسئله وجود دارد.
1- ریاضی را آموزش می دهیم تا به کمک آن دانش آموزان مسئله حل کنند.
2- آموزش ریاضی را از طریق حل مسئله انجام دهیم.
در نگاه اول حل مسئله در پایان فرآیند آموزش قرار می گیرد.
کتاب های ریاضی دوره ی ابتدایی و راهنمایی فعلی نیز با همین دیدگاه برنامه ریزی شده است . لذا ابتدا مفاهم آموزش داده می شوند سپس تکنیک ها و قواعد بین بیان شده پس از کسب مهارت در انجام تکنیک ها، تعدادی مسئله مطرح می شوند تا دانش آموزان باتوجه به دانش ریاضی خود به آن پاسخ دهند.
فرمت : WORD تعداد صفحه :38
مجموعه های فازی درواقع تعمیمی برتئوری مجموعه های قراردادیمی باشد که درسال 1965 به عنوان روشی ریاضی برای روشن کردن ابهامات درزندگی روزمره توسط زادهمعرفی شد. [1].
ایده اصلی مجموعه های فازی ساده است وبه راحتی می توان آن را دریافت. فرض کنید هنگامی که به چراغ قرمز می رسید باید توصیه ای به یک دانش آموز راننده درباره زمان ترمز کردن بکنید. شما می گویید « در74 فوتی چهارراه ترمزکن » یا توصیه ی شما شبیه به این است « خیلی زود از ترمزها استفاده کن »؟ البته دومی ؛ دستورالعمل اول برای انجام دادن بسیار دقیق است. این نشان می دهد که دقت می تواند بی فایده باشد ، تا زمانی که راه های مبهم وغیر دقیق می توانند تفسیر وانجام گیرند. زبان روزمره مثال دیگری است از استفاده وانتشار ابهامات. بچه ها بسرعت تفسیر وانجام دستورالعمل های فازی را یاد می گیرند. (ساعت 10 به رختخواب برو). همه ما اطلاعات فازی نتایج مبهم واطلاعات غیر دقیق را به خاطر می سپاریم وازآن ها استفاده می کنیم وبه خاطر همین مسئله قادر هستیم تا در موقعیتهایی که به یک عنصر تصادفی وابسته است تصمیم گیری کنیم. بنابراین مدل های محاسباتی از سیستمهای حقیقی باید قادر باشند که عدم قطعیت های آماری وفازی را تشخیص دهند ، مشخص کنند ، تحت کنترل خود درآورند ، تفسیر کنند وازآن استفاده کنند.
تفسیر فازی ازاطلاعات یک راه بسیار طبیعی ، مستقیم و خوشظاهر
برای فرموله کردن وحل مسائل مختلف است. مجموعه های قراردادی شامل اشیایی
است که برای عضویت در ویژگیهای دقیقی صدق می کنند. مجموعه H که اعداد از6 تا 8 می باشد یک CRISP است ؛ ما می نویسیم
. به طور مشابه H توسط تابع عضویت (MF)[3]
که مطابق زیرتعریف می شود نیز توصیف می گردد.
[1]-Conventional
[2]-Zade
[3]-Membership Function
فرمت : WORD تعداد صفحه :22
به نام ایزد منان
مشتق و مفاهیم
1- از تعریف مشتق استفاده کنید و فرمول مشتق حاصلضرب (uv) دو تابع مشتقپذیر u و v را بیابید.
2- مشتق تابع زیر را بیابید.

3-
را بیابید.


4- اگر
را بیابید. برای اینکه مشتق وجود داشته باشد، چه محدودیتهایی باید برای دامنهی a قائل شویم؟
5- با توجه به تعریف مشتق تابع، در نقطهی x=1 مقدار
را بدست آورید.
6- در تابع
مقدار
را بدست آورید.
7- مشتق تابع
را بدست آورید.
8- نشان دهید که تابع
در معادلهی زیر صدق میکند:

9- توابع
مفروضاند. آیا این توابع در x=0 مشتق دارند؟ در صورت وجود آنها را تعیین کنید.
10- نشان دهید که تابع
که در آن تابع Q(x) پیوسته است و
، در نقطهی x=a مشتق ندارد. مشتقهای چپ و راست را در این نقطه بیابید.
11- مشتق توابع زیر را از تعریف مشتق حساب کنید.


